11. Aşağıda her çubuğunda 8 tane renkli boncuk bulunan bir abaküs verilmiştir. sol 00000000 0000000 0000000 000000- -0000 Ada, b
11. Aşağıda her çubuğunda 8 tane renkli boncuk bulunan bir abaküs verilmiştir. sol 00000000 0000000 0000000 000000- -0000 Ada, bu abaküsün her çubuğu için sol tarafa bitişik bon- cuk sayısını -1 ile çarparak bulduğu sonuç taban, sağ tarafa bitişik boncuk sayısı ise kuvvet olacak şekilde farklı üslü ifadeler tanımlamıştır. Örneğin, Ada aşağıdaki gibi abaküsün en üst çubuğun- 0915 daki boncukların bir kısmını sola bitişik kalanını sağa bitişik hâle getirerek (-2) üslü ifadesini tanımlamıştır. sağ (-4) (-4) (-5) 7A) 35.53 sol co cococc (5) Ada, bu abaküsteki tüm boncukları yukarıdaki gibi sola ya da sağa bitişik hâle getirerek her birinin değeri nega- tif olan 4 farklı üslü ifade tanımlamıştır. Buna göre, Ada'nın tanımladığı bu üslü ifadelerden en büyüğü ile en küçüğünün çarpımı aşağıdakiler- den hangisidir? B) 7³ C) 39 D) 5 E) 7