Ellipse Questions and Answers

A tunnel is constructed with a semielliptical arch The width of the tunnel is 70 feet and the maximum height at the center of the tunnel is 20 feet What is the height of the tunnel 10 feet from the edge Round your answer to the hundredths place 19 17 feet 16 41 feet 014 01 feet 10 30 feet
Math
Ellipse
A tunnel is constructed with a semielliptical arch The width of the tunnel is 70 feet and the maximum height at the center of the tunnel is 20 feet What is the height of the tunnel 10 feet from the edge Round your answer to the hundredths place 19 17 feet 16 41 feet 014 01 feet 10 30 feet
A one way road passes under an overpass in the shape of half an ellipse 20 ft high at the center and 20 ft wide Assuming a truck is 16 ft wide what is the tallest truck that can pass under the overpass The tallest truck that can pass under the overpass is ft tall
Math
Ellipse
A one way road passes under an overpass in the shape of half an ellipse 20 ft high at the center and 20 ft wide Assuming a truck is 16 ft wide what is the tallest truck that can pass under the overpass The tallest truck that can pass under the overpass is ft tall
Drag each sign and value to the correct location on the image Each sign and value can be used more than once but not all signs and values will be used The vertices of an ellipse are at 5 2 and 5 14 and the point 0 6 lies on the ellipse Drag the missing terms and signs to their correct places in the standard form of the equation of this ellipse 6 5 8 2 OD 2 2 VOD 2 1
Math
Ellipse
Drag each sign and value to the correct location on the image Each sign and value can be used more than once but not all signs and values will be used The vertices of an ellipse are at 5 2 and 5 14 and the point 0 6 lies on the ellipse Drag the missing terms and signs to their correct places in the standard form of the equation of this ellipse 6 5 8 2 OD 2 2 VOD 2 1
A system of equations is made up of an ellipse and a hyperbola Part A Create the equation of an ellipse centered at the origin with a horizontal major axis of 8 units and a minor axis of 6 units Show your work 3 points 6 Part B Create the equation of a hyperbola centered at the origin with a horizontal transverse axis vertex at 7 0 and asymptotes of y t x Show your work 4 points Part C Determine the domain of each conic section and use it to explain why there is no solution to the system 3 points
Math
Ellipse
A system of equations is made up of an ellipse and a hyperbola Part A Create the equation of an ellipse centered at the origin with a horizontal major axis of 8 units and a minor axis of 6 units Show your work 3 points 6 Part B Create the equation of a hyperbola centered at the origin with a horizontal transverse axis vertex at 7 0 and asymptotes of y t x Show your work 4 points Part C Determine the domain of each conic section and use it to explain why there is no solution to the system 3 points
the following equation of an ellipse Answer Step 3 of 4 Find the endpoints of the major and minor axes of this ellipse 9x 64y 72x 128y 368 0 Enter the coordinates to plot points on the graph Any lines or curves will be drawn once all required points are plotted major axis endpoints Ay 15 10 Enable Zo
Math
Ellipse
the following equation of an ellipse Answer Step 3 of 4 Find the endpoints of the major and minor axes of this ellipse 9x 64y 72x 128y 368 0 Enter the coordinates to plot points on the graph Any lines or curves will be drawn once all required points are plotted major axis endpoints Ay 15 10 Enable Zo
Find the equation of the ellipse with the following properties. Express your answer in standard form.
Vertices at (-5, -2) and (-5, 12)
Minor axis of length 2
Math
Ellipse
Find the equation of the ellipse with the following properties. Express your answer in standard form. Vertices at (-5, -2) and (-5, 12) Minor axis of length 2
Graph the given ellipse. Identify the domain, range, center, vertices, endpoints of
the minor axis, and foci in the figure.
(x-1)²/4   +  (y + 1)²/9 =1
The center of the ellipse is (1,-1).
(Type an ordered pair.)
The vertices are         .
(Type ordered pairs. Use a comma to separate answers as needed.)
Math
Ellipse
Graph the given ellipse. Identify the domain, range, center, vertices, endpoints of the minor axis, and foci in the figure. (x-1)²/4 + (y + 1)²/9 =1 The center of the ellipse is (1,-1). (Type an ordered pair.) The vertices are . (Type ordered pairs. Use a comma to separate answers as needed.)
Consider the following equation of an ellipse.
9x² + 49y² +90x+ 392y + 568 = 0
Step 1 of 4: Rewrite this equation in the standard form of an ellipse.
Answer
Math
Ellipse
Consider the following equation of an ellipse. 9x² + 49y² +90x+ 392y + 568 = 0 Step 1 of 4: Rewrite this equation in the standard form of an ellipse. Answer
Consider the following equation of an ellipse. (x+2)^2 /9 + (y-1)^2 /81 =1
Find the center of this ellipse.
Answer
Enter the coordinates to plot points on the graph.
center:
Math
Ellipse
Consider the following equation of an ellipse. (x+2)^2 /9 + (y-1)^2 /81 =1 Find the center of this ellipse. Answer Enter the coordinates to plot points on the graph. center:
Consider the following equation of an ellipse.
(x - 2)²/4+(y + 2)² /16 =1 
Step 3 of 3: Find the coordinates of the two foci of this ellipse. Round your answer to two decimal places
Enter the coordinates to plot points on the graph.
Math
Ellipse
Consider the following equation of an ellipse. (x - 2)²/4+(y + 2)² /16 =1 Step 3 of 3: Find the coordinates of the two foci of this ellipse. Round your answer to two decimal places Enter the coordinates to plot points on the graph.
An arch is in the form of a semi-ellipse, with its major axis as the span. If the span is 80 feet and the height is 30 feet
write the standard equation.

x²/900+ y²/1600=1
x²/1600+ y²/900=1
x²/6400+ y²/900=1
Math
Ellipse
An arch is in the form of a semi-ellipse, with its major axis as the span. If the span is 80 feet and the height is 30 feet write the standard equation. x²/900+ y²/1600=1 x²/1600+ y²/900=1 x²/6400+ y²/900=1
Find an equation of an ellipse satisfying the given conditions.
Foci: (-4, 0) and (4, 0)
Length of major axis: 12
Math
Ellipse
Find an equation of an ellipse satisfying the given conditions. Foci: (-4, 0) and (4, 0) Length of major axis: 12
Find the equation of the ellipse with the center (6,3), a focus at (3,3), and a vertex at (11,3).
Algebra
Ellipse
Find the equation of the ellipse with the center (6,3), a focus at (3,3), and a vertex at (11,3).
An equation of an ellipse is given.
x2/25 + y²/16 = 1
25 16
(a) Find the vertices, foci, and eccentricity of the ellipse.
Math
Ellipse
An equation of an ellipse is given. x2/25 + y²/16 = 1 25 16 (a) Find the vertices, foci, and eccentricity of the ellipse.
An elliptical-shaped path surrounds a garden, modeled by (x-22)/225+ (y-26)²/324 =1, where all measurements are in feet. What is the maximum distance between any two persons on the path, and what key feature does this represent?

15 feet; minor axis
18 feet; minor axis
36 feet major axis
225 feet; major axis
Math
Ellipse
An elliptical-shaped path surrounds a garden, modeled by (x-22)/225+ (y-26)²/324 =1, where all measurements are in feet. What is the maximum distance between any two persons on the path, and what key feature does this represent? 15 feet; minor axis 18 feet; minor axis 36 feet major axis 225 feet; major axis
An equation of an ellipse is given.

(a) Identify the center of the ellipse.
(b) Determine the value of a.
(c) Determine the value of b.
(d) Identify the vertices.
(e) Identify the endpoints of the minor axis.
(f) Identify the foci.
(g) Determine the length of the major axis.
(h) Determine the length of the minor axis.
(i) Graph the ellipse.

Express numbers in exact, simplest form.
9x^2 + 64y^2 = 576
Math
Ellipse
An equation of an ellipse is given. (a) Identify the center of the ellipse. (b) Determine the value of a. (c) Determine the value of b. (d) Identify the vertices. (e) Identify the endpoints of the minor axis. (f) Identify the foci. (g) Determine the length of the major axis. (h) Determine the length of the minor axis. (i) Graph the ellipse. Express numbers in exact, simplest form. 9x^2 + 64y^2 = 576