Üçgende İç ve Dış Açıortay Soruları
Geometri
Üçgende İç ve Dış AçıortayAYDIN YAYINLARI
4. ABC üçgeni şeklindeki karton kâğıdın B köşesi [AD] boyun-
ca C köşesi [AE] boyunca katlanıyor. Katlama sonucunda B
ve C köşeleri aynı düzlemdeki K noktasında çakışıyor.
B
A) 50
D
D
B) 55
Açılar
C) 60
E
K
m (ABC) = 25° olduğuna göre, m (DAE) kaç derecedir?
6
E
D) 65
E) 70
BÖLÜM
00000
Geometri
Üçgende İç ve Dış AçıortayA
A
A) 10
D
B
ABC bir üçgen,
|AB| = 4 cm, |AC| = 6 cm, |BC| = 9 cm
(Badm
ABC üçgeni C noktasından [AD] boyunca katlandığında C
noktası AB üzerindeki C' noktasına geliyor.
6
B) 11
Yukarıdaki verilere göre, Çevre(C'BD) kaç cm dir?
og svolhov b
C) 12
E) 14
D) 13
Geometri
Üçgende İç ve Dış Açıortay1. Dar açılı bir çeşitkenar ABC üçgeninin kenarlarının orta
noktaları D, E ve F'dir. DEF üçgeninin diklik merkezi P
noktasıdır.
Buna göre, ABC üçgeninde P noktasıyla ilgili aşağı-
dakilerden hangisi doğrudur?
A) Diklik merkezidir.
B) Ağırlık merkezidir.
C) İç teğet çemberin merkezidir.
D) Kenar orta dikmelerin kesim noktasıdır.
E) Dış teğet çemberin merkezidir.
Geometri
Üçgende İç ve Dış Açıortayeis
Yayınları
6.
7.
Effective Instructing System
......
A)
LENE
22
5
6
(EMODA son
60° 60°
B
C
ABC bir üçgen, m(BAD)=m (DAC)=60°, |AB| = 6 cm
|AC| = 8 cm
Buna göre, |AD|=x kaç cm'dir?
D
B)-2303 C)
6
Apling
LO
5
60°
24
D
8-
8
D) 250
8
E)
26
9
ABC bir üçgen
[AD] açıortay
|AD|=5 cm
CD|=8 cm
Geometri
Üçgende İç ve Dış Açıortay1. Bir ABC üçgeninde, m(BAN) = m(NAC) olacak şe-
kilde NE [BC] alınıyor.
|AC| = 8 birim, BN) = 2 birim ve |AB| = |NC| oldu-
ğuna göre AN uzunluğu kaç birimdir?
A) 2√3
D) 2/6
A
12ky
B) 4
AÇIORTAY
TEST 02
E) 4/2
C) 2
27
21
(ANI
Kur? - 218!
10
Geometri
Üçgende İç ve Dış AçıortayÖRNEK: 15
12
A
60 60
10
♫
B
Şekilde ABC üçgeninde m (BAD) = m (CAD)= 60°
|AB| =12 br,
|AC| =10 br ise
|AD| kaç br dir?
Çözüm
birbirler
Ryor. Se
id 2CA) vehops [BA]
Desind MC 1d Sr= |BA|
pal1001
musi
10
5
Geometri
Üçgende İç ve Dış Açıortay9. Şekil 1'deki ABCD deltoid biçimindeki kağıt A köşesi BD
doğrusu boyunca katlandığında Şekil 2'deki gibi A' noktası
BCD üçgeninin ağırlık merkezi oluyor.
A
B
B
6
Şekil 1
B) 48
a
A'
C
Şekil 2
6
D
[AB] [AD] ve |AB| = |AD| = 6 cm
olduğuna göre, Şekil 2'deki sarı boyalı bölgenin alanı
kaç cm² dir?
A) 54
C) 36
D
D) 24
E) 18
Geometri
Üçgende İç ve Dış Açıortay8.
7.
6
A
A
B
U. X DI
G
ABC bir dik üçgen, AB BC, GH L BC
G, üçgensel bölgenin ağırlık merkezi
|AB| = 6 cm, |BC| = 8 cm, |GH| = x
Yukarıdaki verilere göre, x kaç cm'dir?
3
A) 12/1/2
B) 1
D) 2
C)
2
E) 3
ABC bir üçgen
$
#
1
1
8
3
1
I
3
(
3
1
1
E
Geometri
Üçgende İç ve Dış Açıortay46.
5
B
Diğer sayfaya geçiniz.
N
M
D
KXE 8
MEU
C) 2
ABED bir teğetler
dörtgeni
CD=7 cm
|MA| = 3 cm
CNB=5 cm
|EC| = 8 cm
|KE| = X
Şekildeki ABC üçgeninin çevresi 38 cm olduğuna
göre, x kaç cm'dir?
A) 1
B) 1,5
D) 2,5
E) 3
Page
Geometri
Üçgende İç ve Dış Açıortay4.
24 cm
A) 6
Şekil 1
B) 7
24
F
C)
C
12 cm
Şekil 2
Şekil 1'de verilen ve bir kısmı düz olan kâğıt Şekil 2'deki gibi
[CD] boyunca katlanıyor.
|AC| = 24 cm ve |CB| = 12 cm'dir.
Böylece [AD] çizildiğinde [AD] [CF] = {E} olmak üzere,
|CE| = |EF| eşitliği elde ediliyor.
15
2
D
Şekil 2'de |AD| = 28 cm olduğuna göre, |ED| = x kaç
cm'dir?
$2
+
B
D) 8
E) 9
OONITELIK
Geometri
Üçgende İç ve Dış AçıortayE) 14
TOOL
3.
Aşağıdaki ABC üçgeninde [AD], BAC açısının açıortayı-
dır.
B
12
A) 31
A
B) 32
D
8
|AB| = 12 cm
|BD| = 8 cm
|DC| = 6 cm
olduğuna göre, ABC üçgeninin çevresi kaç cm'dir?
6
C) 33
C
D) 34
F) 35
Geometri
Üçgende İç ve Dış AçıortayC
dir?
EX
7.
(15)
D
B
ABC bir üçgen, [AC] dış açıortay
7|AD| = 4|AB|, Alan(ABD) = 15 cm²
49
Yukarıdaki verilere göre, Alan(ADC) kaç cm² dir?
A) 16
B) 18
C) 20
D) 24
E) 28
10.
ABC bir üçgen
=3 cm, A
Yukarıdaki ve
|FE|
B
A) 26
Geometri
Üçgende İç ve Dış Açıortay7.
A
E
A) 1/1/12 B)
O
D
B
Şekilde A, O, B noktaları doğrusal, [OC, DOB
açısının açıortayı, [OE, AOD açısının açıortayı
|OC| = 3 cm, |OE| = 4 cm ve |EB| = 7 cm
olduğuna göre |CB| kaç cm dir?
3
2
C) 2
D) 3
EX 4
a b=2
Geometri
Üçgende İç ve Dış Açıortay9.
ladığımızda üst üste gelmeyen tek katlı bölge-
nin çevresi kaç cm olacaktır?
A) 9
B) 8
C) 7
A
A) 2
X
D) 6
ABC üçgen
[AD]; CAF açısının
açıortayı
[AE]; BAC açısının
açıortayı
E 2 C
B 4
Culb mo pa x = 109)
Yukarıda verilenlere göre, |CD| = x kaç cm dir?
B) 3
C) 4
E) 6
D
E) 5
|BE| = 4 cm
|EC| = 2 cm
D) 5
Geometri
Üçgende İç ve Dış AçıortayABC bir üçgen
BDC dik üçgen
[DE] L [BC]
c [AE] açıortay
C
|AB| = 8 cm
|AC| = 2 cm
|EC| = 1 cm
Yukarıda verilenlere göre, |CD| = x kaç cm dir?
8(A) √2
B) √3
D) √5
E) √6
2.
B) 38
B
8
BON
DE
D
X
2
C) 2
E
Geometri
Üçgende İç ve Dış Açıortay7. ABC üçgeninde, kenarortayların kesim noktası G, iç
açıortayların kesim noktası I olduğuna göre,
A, G ve I noktaları doğrusal iken ABC üçgeninde
|AB| = |AC| olur.
L
II. G ve I noktaları çakışık iken bu üçgen eşkenar üçgen-
dir.
H. B, G ve I noktaları doğrusal bir ABC üçgeninde
|BC| = |AC| olur.
yargılarından hangileri doğrudur?
A) Yalnız I
B) Yalnız II
DYI ve III
CI ve II
E) II ve III