Hayalindeki netler. İhtiyacın olan her şey. Tek platform.

Soru çözüm, yayın seti, birebir rehberlik, canlı dersler ve daha fazlası Kunduz’da. Şimdi al, netlerini artırmaya başla.

Logaritmanın Grafiği Soruları

N
21.
Dik koordinat düzleminde, f(x) = log₂ (x-2) ve y=f³(x)
fonksiyonlarının grafikleri verilmiştir.
K
Pe
1
Buna göre, (a + d) (b + c) değeri kaçtır?
A) 26
B) 60
C) 109 D) 120. _E) 169
özel 2
1
ad-
ka-
Lise Matematik
Logaritmanın Grafiği
N 21. Dik koordinat düzleminde, f(x) = log₂ (x-2) ve y=f³(x) fonksiyonlarının grafikleri verilmiştir. K Pe 1 Buna göre, (a + d) (b + c) değeri kaçtır? A) 26 B) 60 C) 109 D) 120. _E) 169 özel 2 1 ad- ka-
2.
Buna göre, A(ABCD) kaç birimkaredir?
A) 36
B) 40
D) 48
3
2
log₂
32
●
A)
A
-1
e-1
A(8,0)
e
C) 44
Loyz
Şekilde y = ex ve y = ex fonksiyonlarının grafikleri ve-
rilmiştir.
D)
x = 0 doğrusu y = ex ve ye doğrularını B
noktasında kesmektedir.
0². 1
20
x = -1 doğrusu y = e* doğrusunu A noktasında,
y = ex doğrusunu C noktasında kesmektedir.
Buna göre, köşeleri A, B ve C olan ABC üçgeninin
alanı kaç br² dir?
E) 52
y=e*
B)
e-1
2e
E)
y=e*
N|D
sirsaf
C)
e²-1
1-D
UNION S
2-D
A) 174
48
0
Yuka
tir.
Bur
der
A)
3-D
Lise Matematik
Logaritmanın Grafiği
2. Buna göre, A(ABCD) kaç birimkaredir? A) 36 B) 40 D) 48 3 2 log₂ 32 ● A) A -1 e-1 A(8,0) e C) 44 Loyz Şekilde y = ex ve y = ex fonksiyonlarının grafikleri ve- rilmiştir. D) x = 0 doğrusu y = ex ve ye doğrularını B noktasında kesmektedir. 0². 1 20 x = -1 doğrusu y = e* doğrusunu A noktasında, y = ex doğrusunu C noktasında kesmektedir. Buna göre, köşeleri A, B ve C olan ABC üçgeninin alanı kaç br² dir? E) 52 y=e* B) e-1 2e E) y=e* N|D sirsaf C) e²-1 1-D UNION S 2-D A) 174 48 0 Yuka tir. Bur der A) 3-D
14. f(x) = ex fonksiyonunun grafiği ile g(x) fonksiyonu-
-42 nun grafiği y = x doğrusuna göre simetriktir.
Buna göre, g(x) fonksiyonu
aşağıdakilerden
hangisidir?
A) g(x) = e
45010
B) g(x) = Inx
D) g(x) =
e
X
C) g(x) = -Inx
E) g(x) = 2lnx
Lise Matematik
Logaritmanın Grafiği
14. f(x) = ex fonksiyonunun grafiği ile g(x) fonksiyonu- -42 nun grafiği y = x doğrusuna göre simetriktir. Buna göre, g(x) fonksiyonu aşağıdakilerden hangisidir? A) g(x) = e 45010 B) g(x) = Inx D) g(x) = e X C) g(x) = -Inx E) g(x) = 2lnx
1. Ünite
ALIŞTIRMALAR
1- Aşağıdaki sayının rakamlarının basamak değerlerini ve sayı değerlerini yazınız.
Basamak Değeri
70 932
Basamak Adları
ni
Doğal Sayıla
Sayı Değeri
O
1. Unite
6-Bölükleri verilen doğal sayıları yazınız.
Binler b
Birler bölüğü:128
Marek
Binler bölüğü: 203
Jukäl 202
Milyc
Bir
Lise Matematik
Logaritmanın Grafiği
1. Ünite ALIŞTIRMALAR 1- Aşağıdaki sayının rakamlarının basamak değerlerini ve sayı değerlerini yazınız. Basamak Değeri 70 932 Basamak Adları ni Doğal Sayıla Sayı Değeri O 1. Unite 6-Bölükleri verilen doğal sayıları yazınız. Binler b Birler bölüğü:128 Marek Binler bölüğü: 203 Jukäl 202 Milyc Bir
eri kaçtır?
1
0
-1
1
4
Şekilde verilen grafik aşağıdaki fonksiyonların hangisiyle
ifade edilir?
A) y = log₁ x
D) y = log₁ X
5
C) y = log₁ X
B) y = log₁ x
2
E) y = log₂x
Herhangi bir fonksiyonunun tersini bulma
1. Fonksiyon y ye eşitlenir.
2. x yerine y ve y yerine x yazılır.
3. y yalnız bırakılır.
r¹y)=x
f(x) = y
Logaritmik ve üstel fonksiyonlar birbi
fonksiyondur.
Birbirinin tersi olan fonksiyonların
Örneğin;
f(x) = 2* fonksiyonunun tersini b
y=2*⇒x=2Y
Lise Matematik
Logaritmanın Grafiği
eri kaçtır? 1 0 -1 1 4 Şekilde verilen grafik aşağıdaki fonksiyonların hangisiyle ifade edilir? A) y = log₁ x D) y = log₁ X 5 C) y = log₁ X B) y = log₁ x 2 E) y = log₂x Herhangi bir fonksiyonunun tersini bulma 1. Fonksiyon y ye eşitlenir. 2. x yerine y ve y yerine x yazılır. 3. y yalnız bırakılır. r¹y)=x f(x) = y Logaritmik ve üstel fonksiyonlar birbi fonksiyondur. Birbirinin tersi olan fonksiyonların Örneğin; f(x) = 2* fonksiyonunun tersini b y=2*⇒x=2Y
9.
Dik koordinat sisteminde x eksenini A noktasında kesen
y = In(2x - 1) fonksiyonu ile y eksenini B noktasında kesen
y = 2* fonksiyonlarının grafikleri verilmiştir.
AY
B
O
y = 2*
A
Buna göre, A (AOB) kaç br² dir?
A) 1/
B) 1/22
C) 1
y = ln(2x-1)
43
D) 1/3
E
54
Lise Matematik
Logaritmanın Grafiği
9. Dik koordinat sisteminde x eksenini A noktasında kesen y = In(2x - 1) fonksiyonu ile y eksenini B noktasında kesen y = 2* fonksiyonlarının grafikleri verilmiştir. AY B O y = 2* A Buna göre, A (AOB) kaç br² dir? A) 1/ B) 1/22 C) 1 y = ln(2x-1) 43 D) 1/3 E 54
ÖRNEK: 44
f: Rt → R
-
f(x) = log₂x
fonksiyonunun değişim tablosunu yaparak grafiğini çiziniz.
Çözüm
f(x) = log₂x
X 0...
ÖRNEK: 45
f: R+ → R
Çözüm
X 0...
f(x) = log 1x
3
1
4
f(x) = log ₁x
1
3
fonksiyonunun değişim tablosunu yaparak grafiğini çiziniz.
1
9
1 2 4 8.
1
3
1
♫
3 9 27
... ∞
...
Lise Matematik
Logaritmanın Grafiği
ÖRNEK: 44 f: Rt → R - f(x) = log₂x fonksiyonunun değişim tablosunu yaparak grafiğini çiziniz. Çözüm f(x) = log₂x X 0... ÖRNEK: 45 f: R+ → R Çözüm X 0... f(x) = log 1x 3 1 4 f(x) = log ₁x 1 3 fonksiyonunun değişim tablosunu yaparak grafiğini çiziniz. 1 9 1 2 4 8. 1 3 1 ♫ 3 9 27 ... ∞ ...
2.
1.
fonksiyonunun grafiği aşağıdakilerden hangisi-
dir?
A)
f(x) = log₁ X
2
sidir?
AY
+
B)
D)
e
4
f(x) = = Inx
fonksiyonunun grafiği aşağıdakilerden hangi-
üstel fonks
f(x)=1
fonksiyons
dir?
3.
karekök
A)
1
Lise Matematik
Logaritmanın Grafiği
2. 1. fonksiyonunun grafiği aşağıdakilerden hangisi- dir? A) f(x) = log₁ X 2 sidir? AY + B) D) e 4 f(x) = = Inx fonksiyonunun grafiği aşağıdakilerden hangi- üstel fonks f(x)=1 fonksiyons dir? 3. karekök A) 1
26. Aşağıda y = a ve y = b* üstel fonksiyonlarının grafikleri
(0, 1) noktasından geçmekte ve y eksenine göre simetriktir.
y=ax
y=bx.
Buna göre,
1. |a| = |
II. a.b=1
III. a 2 olabilir.
ifadelerinden hangileri doğrudur?
A) Yalnız I
B) Yalnız
CHI've Il
D) I ve III
E I, II ve III
27. Norman penceresi bir dikdörtgen ile yarım dairenin dikdört-
genin kısa kenarı üzerinde çakışmasıyla oluşan bir pencere
türüdür.
9²²2²-1
Matematik T
28
12
id
- IN
√ (17
Lise Matematik
Logaritmanın Grafiği
26. Aşağıda y = a ve y = b* üstel fonksiyonlarının grafikleri (0, 1) noktasından geçmekte ve y eksenine göre simetriktir. y=ax y=bx. Buna göre, 1. |a| = | II. a.b=1 III. a 2 olabilir. ifadelerinden hangileri doğrudur? A) Yalnız I B) Yalnız CHI've Il D) I ve III E I, II ve III 27. Norman penceresi bir dikdörtgen ile yarım dairenin dikdört- genin kısa kenarı üzerinde çakışmasıyla oluşan bir pencere türüdür. 9²²2²-1 Matematik T 28 12 id - IN √ (17
S
26. Bir sunucu ve beş yorumcunun katıldığı bir haber prog-
ramında katılımcılar yanyana konulmuş 6 koltuğa otura-
caklardır.
Sunucunun başta veya sonda oturacağı bilindiğine
göre, bu koltuklara katılımcılar kaç farklı şekilde otu-
rabilirler?
A) 360
B) 320
C) 280
D)
E) 120
240
Lise Matematik
Logaritmanın Grafiği
S 26. Bir sunucu ve beş yorumcunun katıldığı bir haber prog- ramında katılımcılar yanyana konulmuş 6 koltuğa otura- caklardır. Sunucunun başta veya sonda oturacağı bilindiğine göre, bu koltuklara katılımcılar kaç farklı şekilde otu- rabilirler? A) 360 B) 320 C) 280 D) E) 120 240
9
ti
AYDIN YAYINLARI
x)/
AYT Deneme Sınavı
5. Şekil 1 de sol üst köşeleri y = log₂x fonksiyonunun üzerin-
de, bir kenarı 1 birim olan dikdörtgenler, Şekil 2 de ise sağ
üst köşeleri y = log₂x fonksiyonunun üzerinde, bir kenarı
1 birim olan dikdörtgenler gösterilmiştir.
y = log₂x
O 1 2 3
4 5 6
Şekil 1
y = log₂x
X
>X
O 1 2 3
4 5 6
Şekil 2
Şekil 1 de oluşturulan 9 dikdörtgenin alanları toplamı,
Şekil 2 de oluşturulan 8 dikdörtgenin alanları topla-
mindan kaç birimkare fazladır?
B) log 8
C) log,6
A) log, 10
E) 1
D) 2
3
10%2
109₂ 2 + 109₂ ³ + 109,
2
=A
Lise Matematik
Logaritmanın Grafiği
9 ti AYDIN YAYINLARI x)/ AYT Deneme Sınavı 5. Şekil 1 de sol üst köşeleri y = log₂x fonksiyonunun üzerin- de, bir kenarı 1 birim olan dikdörtgenler, Şekil 2 de ise sağ üst köşeleri y = log₂x fonksiyonunun üzerinde, bir kenarı 1 birim olan dikdörtgenler gösterilmiştir. y = log₂x O 1 2 3 4 5 6 Şekil 1 y = log₂x X >X O 1 2 3 4 5 6 Şekil 2 Şekil 1 de oluşturulan 9 dikdörtgenin alanları toplamı, Şekil 2 de oluşturulan 8 dikdörtgenin alanları topla- mindan kaç birimkare fazladır? B) log 8 C) log,6 A) log, 10 E) 1 D) 2 3 10%2 109₂ 2 + 109₂ ³ + 109, 2 =A
4.
O
h(x)
g(x)
f(x)
Şekilde,
f(x) = log x, g(x) = logox, h(x) = log₂x
fonksiyonlarının grafikleri verilmiştir.
Buna göre, aşağıdakilerden hangisi doğrudur?
A) b<c< 1<a
C)c<b<a < 1
E) 1<a<b<c
ACU MATER
B) b<c<a<1
D) b< 1<c<a
Lise Matematik
Logaritmanın Grafiği
4. O h(x) g(x) f(x) Şekilde, f(x) = log x, g(x) = logox, h(x) = log₂x fonksiyonlarının grafikleri verilmiştir. Buna göre, aşağıdakilerden hangisi doğrudur? A) b<c< 1<a C)c<b<a < 1 E) 1<a<b<c ACU MATER B) b<c<a<1 D) b< 1<c<a
14. a, b, c ve d gerçek sayılar olmak üzere
a loga
l-bx+c)
f(x) = a. log.(bx + c)
+11) < +)
fonksiyonu tanımlanıyor.
=
Tanımlı olduğu aralıkta y = f(-x) fonksiyonu azalandır.
logox < b eşitsizliğinin çözüm kümesi (db, xo) dur.
logdd
Buna göre aşağıdakilerden hangisi daima doğrudur?
A) a.c>0 B) a + c < 0 C)a.b< 0
D) a.d>0
E)b.d< 0
Lise Matematik
Logaritmanın Grafiği
14. a, b, c ve d gerçek sayılar olmak üzere a loga l-bx+c) f(x) = a. log.(bx + c) +11) < +) fonksiyonu tanımlanıyor. = Tanımlı olduğu aralıkta y = f(-x) fonksiyonu azalandır. logox < b eşitsizliğinin çözüm kümesi (db, xo) dur. logdd Buna göre aşağıdakilerden hangisi daima doğrudur? A) a.c>0 B) a + c < 0 C)a.b< 0 D) a.d>0 E)b.d< 0
14.
T
a = log(cos) (tan)
b=log(sin(cos
c=log(cot ) (tan
=pa 12
TT
18
olduğuna göre, a, b ve c sayılarının işaretleri
sırasıyla aşağıdakilerden hangisidir?
A) +, +, +
B) -, +,-
C)-, +, +
D) -, -, +
E) +, -, -
Lise Matematik
Logaritmanın Grafiği
14. T a = log(cos) (tan) b=log(sin(cos c=log(cot ) (tan =pa 12 TT 18 olduğuna göre, a, b ve c sayılarının işaretleri sırasıyla aşağıdakilerden hangisidir? A) +, +, + B) -, +,- C)-, +, + D) -, -, + E) +, -, -
6.
k, m ve n birer pozitif gerçek sayı olmak üzere,
f(x) = log,
g(x) = log,
h(x) = log,
fonksiyonlarının grafikleri aşağıda verilmiştir.
23
h
&
Buna göre,
f
1. f(m) > 0
II. g(n) > 0
III. h(k) > 0
eşitsizliklerinden hangileri doğru-
dur?
A) Yalnız!
B) Yalnız 11
C) I ve II
D) I ve III
E) Il ve III
Lise Matematik
Logaritmanın Grafiği
6. k, m ve n birer pozitif gerçek sayı olmak üzere, f(x) = log, g(x) = log, h(x) = log, fonksiyonlarının grafikleri aşağıda verilmiştir. 23 h & Buna göre, f 1. f(m) > 0 II. g(n) > 0 III. h(k) > 0 eşitsizliklerinden hangileri doğru- dur? A) Yalnız! B) Yalnız 11 C) I ve II D) I ve III E) Il ve III
i Ve Logaritma Fonksiyonlarının Grafikleri
f(x) = afonksiyonu ile bu fonksiyonun tersi olan f'(x) = log x fonksiyonun grafikleri y=x doğusuna göre
a> 1 için
YA
0<a < 1 için
y=x
y = a*
YA
yolog,
y
y=log
*
10/1
f(x) = a' fonksiyonu artandır.
VER için f(x) = a'>0 dir.
x=0 için y = f(0) = 3° = 1 noktasından geçer.
Bu bilgiler işığında f(x) = a' fonksiyonunun a > 1
iken grafigi yukardaki gibidir.
f(x) = a' fonksiyonu azalandır.
VER için f(x) = a* >0 dir.
x=0 için y = f(0) = a = 1 dir
Yani f(x) in grafiği (0,1) noktasından geçer.
Bu bilgiler ışığında f(x)= a' fonksiyonunun
0<a < 1 iken grafiği yukardaki gibidir.
Lise Matematik
Logaritmanın Grafiği
i Ve Logaritma Fonksiyonlarının Grafikleri f(x) = afonksiyonu ile bu fonksiyonun tersi olan f'(x) = log x fonksiyonun grafikleri y=x doğusuna göre a> 1 için YA 0<a < 1 için y=x y = a* YA yolog, y y=log * 10/1 f(x) = a' fonksiyonu artandır. VER için f(x) = a'>0 dir. x=0 için y = f(0) = 3° = 1 noktasından geçer. Bu bilgiler işığında f(x) = a' fonksiyonunun a > 1 iken grafigi yukardaki gibidir. f(x) = a' fonksiyonu azalandır. VER için f(x) = a* >0 dir. x=0 için y = f(0) = a = 1 dir Yani f(x) in grafiği (0,1) noktasından geçer. Bu bilgiler ışığında f(x)= a' fonksiyonunun 0<a < 1 iken grafiği yukardaki gibidir.