Trigonometrik Oranlar Soruları
Lise Matematik
Trigonometrik Oranlar7.
Bir kenarının uzunluğu 12 cm olan Şekil 1 deki ABCDER
düzgün altıgeni biçimindeki kâğıt [AB] kenarının orta nokta-
sından itibaren simetri ekseni boyunca kesilerek iki parçaya
ayrılmıştır.
4M =253
M=3√3
953/3/352
B
C
12
1283
D
Şekil 1
F
D
12
G
E
B
H
C
K
Şekil 2
D
|GK| = 3.|HK| olmak üzere, elde edilen parçalardan biri
Şekil 2 deki gibi [DK] boyunca kesilmiştir.
Buna göre, DK kaç cm dir?
3√27+
A) 6-10 B) 3437 C) 18
D)3√31 E) 943
E) 943
13031
ARCDE düzgüp besgen
10
3.2
ARI
11
12
Lise Matematik
Trigonometrik Oranlar8.
sin + sin²
2 2π
5
2 T
10
5π **
14
cot. cot-
ifadesinin değeri kaçtır?
A)-1
B) 0
sin².
C) 1
72 +5in² 18 71
D) 2
AHO
E) 3
YAYINLARI
VXX TV
ORIJINAL
1-sinB-a
bağıntısı varsa
A) 30°
11. ABC üçg
a=
b=
C=
Buna
Lise Matematik
Trigonometrik Oranlar27. Aşağıda bazı trigonometrik ifadeler yardımıyla tanımlanmış
"metan" ve "metin" fonksiyonları verilmişür.
1
1+tanx
1
cotx − 1
Buna göre, metan30+ metin30 işleminin sonucu kaçtır?
1
1
A)
metanx =
metinx =
D) 1
B)
E) 2√3-1
2
Bu
45
şa
ha
A
Lise Matematik
Trigonometrik Oranlar1.
C
D) cota
a
x = 1
E) -cota
A
B(1, tand)
Şekildeki O merkezli birim çemberde m(AOC) = a açısı
için B, O ve C noktaları doğrusal olup A ve B noktaları x = 1
doğrusu üzerindedir.
Buna göre, IABI aşağıdakilerden hangisidir?
A) sina
B) -tana
C) tana
X
Lise Matematik
Trigonometrik Oranlar1. Bir saat tasarımcısı birim çember şeklinde bir saat
tasarlamış ve bu çemberin merkezine yelkovan ve akrebi
yerleştirmiştir. Saat üzerindeki sayılardan bazıları yerine,
radyan cinsinden açı ölçü birimleri belli bir düzene göre
yazılmıştır.
TT
Örneğin, aşağıdaki saatle ile gösterilen sayı 12'yi, π ile
gösterilen sayı 9'u temsil etmektedir.
A)
Buna göre, saat 02:00'yi gösterirken, birim çember
üzerinde akrebin gösterdiği noktanın koordinatları
aşağıdakilerden hangisidir?
√3
(1/11/20
JT
2
√3 11
2'2
in
51-30
E)
B)
√2 √2
2
D) (0.1)
3.
Lise Matematik
Trigonometrik Oranlar26. [AD] doğru parçası biçiminde bir anayolun A nokta-
sından [AB]1[AD]ve |AB| = 4 birim olacak biçimde
B noktasına kadar yol yapılıyor. Sonra B noktasın-
dan |BC| = 5 birim olacak biçimde anayol üzerindeki
C noktasına kadar başka bir yol daha yapılıyor. Bu
durumda |CD|=2 birim ölçülüyor. Aşağıda bu du-
rum modellenmiştir.
tır?
2
A) -
19
A
D)
4
m(CBD)=x olduğuna göre, tan(x) değeri kaç-
B
27
5
AYT. 7. DENEME
B)
C 2
3
23
E)
8
D
31
4
25
Raunt
27
Ozan, bi
ğıdaki e
denk ola
●
●
|OG|
|AF|
Buna g
diği tri
A) sin(
C) cos
28. 0<
old
A)
Lise Matematik
Trigonometrik Oranlarnu-
|||
23. Aşağıda dik koordinat düzleminde, bir f doğrusal
fonksiyonunun grafiği ve bu grafiğin y = x doğrusu-
na göre simetriği olan g fonksiyonunun grafiği veril-
miştir.
g
#
Buna göre,
AY
-5
f(x)
lim
x--6 g(x)
limitinin değeri kaçtır?
A) 25
B) 28
3
C) 30
y = x
X
D) 32
E) 36
Lise Matematik
Trigonometrik Oranlar13.
ABCD ve KLMN dikdörtgenleri birim karelerden oluşmuştur.
N
M
D
A
A)
3
14.a
K
Buna göre, tan a + cot 8 toplamı kaçtır?
B)
0
2/3
L
C
C) 1
B
4|3
E) 2
Bir saat kulesindeki dairesel saatin merkezinin zemine olan
uzaklığı 600 santimetredir. Bu saat kulesindeki saatin akrebi
ve yelkovanı sırasıyla 60 ve 100 santimetre uzunluktadır.
15.
1
sin
cos 3
ifades
A) O
16.
X
Lise Matematik
Trigonometrik Oranlar7. A
4
End
B
D(0
H
X
D) 4cota
Buna göre, |CH| = x'in a türünden eşiti aşağıdakilerden
ebehangisidir? +
A) 4sina
B) 4cosa
ES
Sid=4
ABC üçgen
[AB] L [BC]
[BH] L [AC]
m(BAC) = a
|BH| = 4 birim
E) 4seca
X =
C) 4tana
Lise Matematik
Trigonometrik Oranlar30. O merkezli birim çember üzerinde bulunan P noktası,
aşağıdaki dik koordinat düzleminde gösterilmiştir.
AY
~/~/
dr.
uls
N/C
T
B) 1
P
= 0
M
1/5
he
216
7/6/0/6
M
25
D) -1
Cos + 1
= 1
• m(POT)
olduğuna göre, cote + cosece toplamı kaçtır?
A) 2
Goo
C) 0
E)-2
M = 1 1-9
'M²=
= 16
25
M = -4/5
Makels
25
Cost
Lise Matematik
Trigonometrik Oranlar8
gi-
un
41=1
aç y
+
35.
BS YAYINLARI
36.
büyür.
7-
(-34).
A 4
A
(-34
D
Şekil 1
Şekil 2
YA
D) y = x + 6
20
K
E
CI O
B
YA
B) 2y = 12 + x
E
B
Şekil 1'deki AOBC bir dikdörtgen, C(-6, 4) noktası
veriliyor.
X
AOBC dikdörtgeni d doğrusu boyunca C noktasın-
dan katlanınca, Şekil 2'deki gibi C noktası x ekseni
üzerindeki C' noktasına geldiğine göre, d doğru-
sunun denklemi aşağıdakilerden hangisidir?
A) 3y = x + 6
[CH]
C) 2y = x + 6
E) y = 2x - 6
L
B
B
B
-2x+y=4
Y=2x+4
Lise Matematik
Trigonometrik Oranlar3. [CD] kenarının uzunluğu 1 birim olan aşağıdaki
ABCD dörtgeninin [BC] ve [AD] kenarları [AB] kena-
rıyla dik kesişmektedir. [AB] kenarı üzerinde bir
E noktası alınıp [CE] açıortayı ve [DE] çizildiğinde bu
iki doğru parçası yine dik kesişmektedir.
A) cos(2a)
ANK-2305
A
EK
B
D
[CE], BCD açısını a derecelik eşit iki açıya böldü-
ğüne göre, ADE üçgeninin çevresinin, EBC üç-
geninini çevresine oranı aşağıdakilerden han-
gisine eşittir?
B) sin(2a)
D) tan(a)
a
C
C) cot(a)
E) sec(2a)
2+
21
5.
Lise Matematik
Trigonometrik Oranlareğer
A
A
5
6.
D) sinx-
1-sin²x = cosy
41
sinx
ifadesi
A)-
Siri
3
2
sinr
1+cosx
1 + secx
aşağıdakilerden hangisine eşit olabilir?
B)-
lacosx
4
3
tesh?
cost sinc
cosx
C)
SMAY
sinc-sine
2
32
14 COSX, Cosk
hak üzere
E) 2
COSTAT
Lise Matematik
Trigonometrik Oranlar53
12
BY 10
37°1
Yerden göz seviyesine kadar yüksekliği 2m olan bir kişi
sokak aydınlatma lambasına 12 metre uzaklıktan 37° lik bir
açıyla baktığında lambanın tepe noktasını görmektedir.
Buna göre (lambanın yüksekliği kaç metredir?
(tan37° = 0,75)
A) 9
D) 12
E 13
Lise Matematik
Trigonometrik Oranlar1
2!
(
2
TYT/TEM
32. Bir dik üçgenin hipotenüsü üzerine Şekil 1'deki gibi
konulan dikdörtgenin bir köşesinin zemine uzaklığı
10 birimdir. Şekil 2'de dikdörtgen, ok yönünde bir miktar
ötelendiğinde köşesinin zemine uzaklığı 11 birim oluyor.
x
030
STAM
Orde
2cm
10
6
5
Şekil 16
10
11
8
Şekil 28
Buna göre, x ile ifade edilen uzunluk kaç birimdir?
A) 5
B) 2
D) 6
E)4
4
Icm
33. Şekil 1'de gösterilen tost makinesinde kalınlığı önemsiz
tost kalıbı yardımıyla içinde bulunan kare biçimli ekmeğin
köşegeni boyunca iz oluşuyor. Ekmek, doğrultusu
değişmeden ok yönünde 4 cm ötelenerek tost makinesi
tekrar kapatılıp açıldığında Şekil 2'deki görüntü oluşuyor.
Lise Matematik
Trigonometrik Oranlar5.
Buna göre, |AB| uzunluğunun trigonometrik ifa-
desi aşağıdakilerden hangisidir?
A) cosa
D) 1
A) sina
A 1
B) sina
(E) cota
Cot (go-a)
BD
Sa 1
C
y=1
X
D) cota - cosa
B) cosa
C) tana
Buna göre, BD uzunluğunun trigonometrik ifa-
desi aşağıdakilerden hangisidir?
tara
CH
B
4
1
Yandaki birim
çemberde
m(DOC) = a
AB: y = 1
BCL OX
en AB = {D}
C) tana
E) cota - sina
Yandaki birim
çemberde
m(AOD) = a
AB:x=1
BCL OX