Denklem ve Eşitsizlik Problemleri Soruları
Lise Matematik
Denklem ve Eşitsizlik Problemleri4.
2 >
Hazal, bir kırtasiyeden cüzdanındaki parasıyla Kalem(KX
Silgi (S) ve defter (D) ürünlerinden 2 tanesini alacaktır.
Kalemin fiyatı K lira,
Silginin fiyatı S lira
Defterin fiyatı D lira
• Kalem ve defter almak istediğinde parasının yetmedi-
ğini
• Defter ve silgi almak istediğinde parasının artacağını
• Kalem ve silgi aldığında parasının tam yeteceğini an-
liyor.
Buna göre, K, S ve D arasındaki sıralama aşağıdaki-
lerden hangisinde doğru verilmiştir?
B) K <D<S (<DK
CS<D<K
D) S<K<D E) D<S<K
AD<K«S
2
Lise Matematik
Denklem ve Eşitsizlik Problemleri1. Bu testte 40 soru vardır.
2. Cevaplarınızı, cevap kâğıdının Temel Matematik Testi için ayrılan kısmına
1.
3.
800 gramlik paketlerde satılan karışık kuru yemişlerden 6 pa-
ket alan Serkan, bu kuru yemişleri bir kaba koymuş ve 9 arka-
daşı ile paylaşmıştır. Bu paylaşımdan kuru yemiş alan Selim,
kendi payına düşen kismi, ilk paylaşımdan kuru yemiş alma-
yan 3 arkadaşıyla paylaşmıştır.
Buna göre Selim'in son paylaştırdığı kuru yemişten alan
bir arkadaşı kaç gram kuru yemiş almıştır?
A) 100
B) 120
C) 130
D) 150
E) 160
Lise Matematik
Denklem ve Eşitsizlik Problemleri21. Gerçol
fo
D
biçim
Bun
B
19. 1'den itibaren pozitif tam sayılar kendisi kadar tekrarlanarak
(an) = (1, 2, 2, 3, 3, 3, 4, 4, 4, 4,..., n, n, n, ... )
tane
DI
biçiminde (an) dizileri oluşturuluyor.
Buna göre (azı) dizisinin 160. terimi aşağıdakilerden
hangisidir?
A)
D) 20
E) 21
C) 19
B) 18
A) 17
1)
21.22
Lise Matematik
Denklem ve Eşitsizlik Problemlerit32
46
1, 2, 3, 12 33
5,10 >
41. Bir fabrikada 1, 2, 3, 5, 10 ve 12 litrelik cam şişeler üretil-
mektedir.
En çok sipariş edilen 5 ve 10 litrelik cam şişelerin günlük
toplam üretim miktarı, tüm şişelerin günlük toplam üretim
miktarının üçte ikisi kadardır. Diğer cam şişelerin ise her bi-
rinden günlük eşit miktarda üretilmektedir.
Bu fabrikada 1 günde toplam 1260 tane cam şişe üretil-
diğine göre 1,2,3 ve 12 litrelik cam şişelerin her birinden
günlük kaç tane üretilmektedir?
E) 110
A) 90
B) 95
D) 105
C) 100
Lise Matematik
Denklem ve Eşitsizlik Problemleri17. Hatalı bir duvar saati 5 saat düzgün çalıştığında 2 saat
geriye doğru çalışmaktadır.
Örneğin, saat 09.00'da ilk kez çalıştırıldığında saat 14.00'e
kadar normal çalışmakta, sonraki 2 saat geriye doğru
çalışarak 12.00'yi göstermektedir.
Buna göre, saat 09.00'da doğru olarak çalıştırıldığında
saat 23.00'ü gösterdiğinde aradan geçen saat;
l. 14
II. 26
III. 29
sayılarından hangisi olabilir?
A) Yalnız!
B) Yalnız II
C) I ve II
Orno
D) II ve III
E) I, II ve III
Lise Matematik
Denklem ve Eşitsizlik Problemleri17. Hatalı bir duvar saati 5 saat düzgün çalıştığında 2 saat
geriye doğru çalışmaktadır.
Örneğin, saat 09.00'da ilk kez çalıştırıldığında saat 14.00'e
kadar normal çalışmakta, sonraki 2 saat geriye doğru
çalışarak 12.00'yi göstermektedir.
Buna göre, saat 09.00'da doğru olarak çalıştırıldığında
saat 23.00'ü gösterdiğinde aradan geçen saat;
1.
14
II. 26
III. 29
sayılarından hangisi olabilir?
A) Yalnız
B) Yalnız II
C) I ve II
D) II ve III
E) I, II ve III
Lise Matematik
Denklem ve Eşitsizlik Problemleriq q
A ut = 2 keus)
A
A
188 Troset
25. E
22. Mert bir kitabın 5 dakikada 4 sayfasını, Nilay ise aynı
kitabın 3 dakikada 2 sayfasını okuyabilmektedir.
Mert ile Nilay aynı anda bu kitabı okumaya başlamış ve
Mert kitabı Nilay'dan 45 dakika önce bitirmiştir.
Buna göre, Mert ile Nilay bu kitabı toplam kaç daki-
kada bitirirler? 122
A) 540
B) 525
C) 495
D) 480
E) 465
Lise Matematik
Denklem ve Eşitsizlik Problemleri2.
Melih bir demir çubuğu 5 saniyede, aynı kalınlıkta bir
tahta çubuğu 2 saniyede kesiyor.
Buna göre, Melih elinde bulunan 4 demir çubuğu
5 parçaya, 5 tahta çubuğu 4 parçaya ayırdığında
toplamda kesim işi için kaç saniye harcıyor?
A) 110
B) 120
C) 125
D) 130
E) 140
Lise Matematik
Denklem ve Eşitsizlik ProblemleriA
A
A
TYT
21. Kriptoloji alanında eğitim alan Emre, 150 satır ve 3
sütundan oluşan bir tablo yardımıyla A ve B
harflerinden oluşan özel amaçlı bir kod yazmıştır.
23. için
her
dal
aşa
A
AA
B
A
A
A
B.
A
2
A
A
A
S
A
A
B
A
A
A
A
A
B
A
B
A
750/60
-
4
-
-
B
A
A
A
A
A
Emre, bu tablonun her satırındaki üç karenin tamamına
A harfi ya da herhangi ikisine A, birine B harfi
yerleştirerek 450 haneli
A
ka
go
AAABAAABAAA...BAAAAA
BU
kodunu elde etmiştir.
gr
Tablonun;
• 1. sütununda 106 tane A harfi,
• 2. sütununda 102 tane A harfi,
3. sütununda 114 tane A harfi
olduğuna göre tabloda B harfinin bulunmadığı kaç
satır vardır?
D) 30
A) 20
C) 24
E) 32
B) 22
Lise Matematik
Denklem ve Eşitsizlik Problemlerii Matematis
26. Bir balki teknesi nehirde akintiyla birlikte saatte 12
akinya karsi saatte 6 km hula gidebilmektedir
Akintuya karsi teknesiyle hareket eden balik gidec
yolun yarisina geldiğinde motoru bozuluyor ve akinys
kapiliyor
Ginigi yolun kadar geri geldiginde motoru kara
si tarsie
6
eden balki motorun hizni saatte x km'ye ayarlayarak
başlangıçta ulaşması gereken sürede hedefine ayy
Buna göre, x aşağıdakilerden hangidir?
C) 12
D) 11,5
B) 13,5
E) 10
A) 14
Lise Matematik
Denklem ve Eşitsizlik Problemleri16. n pozitif tam sayı olmak üzere, n! sayısı
@
.
n! = n(n-1) · (n -2)... .2.1
biçiminde ifade edilir.
Bir n sayısı aşağıdaki özelliği sağlamaktadır.
an! sayısı (n - 3) tane ardışık pozitif tam sayinin çarpımı
biçiminde yazılabilmektedir."
Örnek: 6! = 10.9.8 dir.
6:54:32
Buna göre, bu özelliği sağlayan iki basamaklın
sayısının rakamları toplamı kaçtır?
A) 4
B) 5
C) 6
D) 7
E) 8
13
14 - 1:213.4.
Lise Matematik
Denklem ve Eşitsizlik ProblemleriA) 20
D) 35
B) 25
E) 40
A) 900
C) 3000
B) 1100
15e
soo
100
soot 1500
o
Q
2. % 40 kârla 560 TL ye satılan bir malın maliyeti ka
TL dir?
6. Bir kalem x TL den sa
% 25 zarar edilmekte
Buna göre, ora
y
2.
Es guçte
boyuyor Bu
E) 300
D) 320
C) 360
B) 380
A) 400
A) 2
B
A) 5
x
X
nue
B) 6
Chist
lug
logosyo
1
karekök
Sisut
2-25
% 30 kârla k a 7. Ununk
Lise Matematik
Denklem ve Eşitsizlik Problemleri11. x gerçel sayısı 2'den küçük değildir ve 5'ten büyük değildir.
y gerçel sayısı,-4'ten küçük değildir ve 2'den büyük değil-
dir
Buna göre, x + y ifadesinin alabileceği farklı tam sayı
değerlerinin toplamı kaçtır?
A) 23 B) 24
C) 25
D) 26
E) 27
Lise Matematik
Denklem ve Eşitsizlik Problemleri5.
Bir okuldaki 135 öğrenci, bir bayram tatilinde
evlerine gidiş ve evlerinden dönüş için A veya B
otobüs firmaları ile seyahat etmiştir. Öğrencilerin
75 tanesi gidişte A firmasını, 90 tanesi dönüşte B
firmasını tercih ederken 86 öğrenci gidiş ve dö-
nüşte farklı firmalar ile seyahat etmiştir.
Buna göre, B firması ile gidip A firması ile dö-
nen toplam öğrenci sayısı kaçtır?
A) 22
B) 25
C 28
D) 31
E) 34
Lise Matematik
Denklem ve Eşitsizlik Problemleriw1
23
25. Bir boyacı, müşterisinin istediği rengi tutturabilmek için;
kırmızı, sarı, mavi ve beyaz renkleri sırasıyla %15, %50,
i *--_Y%10 ve %25 oranında karıştırmakta ve müşterinin iste-
Siakoy:toy diğini elde etmektedir.
Bu boyacı her 1 metrekare yeri boyamak için 0,25 kilog-
ram boya kullanmaktadır.
xxSyug .
51
Elinde 12 kilogram kırmızı, 28 kilogram sarı, 9 kilogram
mavi ve x kilogram beyaz renkli boya bulunan boyacı,
müşterisinin istediği renkte en fazla 200 metrekare yer
boyayabilmektedir.
x=
Buna göre, x'in değeri,
I. 12
II. 12,5
III. 13
sayılarından hangileri olabilir?
A) Yalnız!
B) Yalnız II
C) Yalnız III
D) I ve II
E) II ve III
Lise Matematik
Denklem ve Eşitsizlik Problemleri2.
% 40 1 erkek olan bir sınıfa, 10 erkek öğrenci daha
katıldığında siniftaki erkek öğrenci sayısı, sinifin
S% 60 i oluyor.
E
Buna göre, sınıftaki kız öğrenci sayısı kaçtır?
A) 8 B) 10 C) 12 D) 14 E) 16
ra