İkinci Dereceden Bir Bilinmeyenli Denklem Soruları
Lise Matematik
İkinci Dereceden Bir Bilinmeyenli Denklem10.
-x²-8x-16 ≤0
eşitsizliğinin çözüm kümesi aşağıdakilerden han-
gisidir?
A) Ø
11.
B) R
D) (-∞, -4]
C) {4}
E) [-4,00)
2
x² = 8x+16=0
41
4x² - 12x +9>0
eşitsizliğinin çözüm kümesi aşağıdakilerden han-
vuos
Lise Matematik
İkinci Dereceden Bir Bilinmeyenli Denklem2x² + (a + 4)x + a = 0
denkleminin zıt işaretli iki kökü x, ve x₂ olup x₁ < x₂
iken |x₁|>x₂ olduğuna göre, a'nın en geniş değer ara-
lığı aşağıdakilerden hangisidir?
A)-2<a<0
C) a < 0
B)-4<a<0
D) a <-4
E)-2 < a < 1
Lise Matematik
İkinci Dereceden Bir Bilinmeyenli Denklemmty
2
do|=
-2
E) 10
12.
x² + ax + 12 = 0
+ 6x + 2 = 0
denkleminin birer kökü ortak olduğuna göre, a değeri kaç-
ve
tır?
$2.
B) 4
A) 8
m/+am +12=0
M²²² + 6m² +20=0
C) 2
D) -2
E) -8
²²6²² am +12=6m² zawo
Lise Matematik
İkinci Dereceden Bir Bilinmeyenli Denklem1.
x² - 6x + 2 = 0
denkleminin kökleri x₁ ve x₂'dir.
Buna göre,
2
●
x ₂²0 x ₂ + x ₂²0 x ₁
•
ifadesinin değeri kaçtır?
36-8=28
X6-2√2-3-√7
8
3+√7
A) 36
B) 12
C) 24
D)-12
E)-6
[(3-√7): 3467] + [(3+√7)², 3-67]
3-√5
(2-6√2 + 7). (3+√7) + (9+667+7), (3-√7)
27-1867+21+97-42+767 +27
da
Lise Matematik
İkinci Dereceden Bir Bilinmeyenli Denklem1.
2
f(x) = (a²-4)x³ + (a − 2)x² + 2x + 40
fonksiyonunun grafiği parabol gösterdiğine göre,
f(a) kaçtır?
A) 16
a²²² = 4
2 = -2
9=2
B) 18
C) 20
- 4x
2
1
D) 24
((-2)=-4x^² + 2a + 40
E) 28
-16-8 + 40 = 16
1
I
1
I
I
5.
Lise Matematik
İkinci Dereceden Bir Bilinmeyenli Denklem6. İki tane telsizden birinci telsiz x² km'lik bir uzaklığa kadar
etki etmektedir.
İkinci telsiz ise birinci telsizin 64 katının karekökü kadarlık
bir uzaklığa etki etmektedir.
ÖSYM TARZI SORULAR
İkisinin yaptığı toplam etki uzaklığı en çok 20 km ol-
duğuna göre, ikinci telsizin yaptığı etki en çok kaç
km'dir?
A) 6
B) 8
C) 10
D) 12
E) 16
9.
Lise Matematik
İkinci Dereceden Bir Bilinmeyenli Denklem2.
a bir gerçel sayı olmak üzere;
a42a² = 24
3a
tır?
A) 24
olduğuna göre, a'nın alabileceği farklı değerlerin çarpımı kaç-
B) 12
C) 6
3a-1)(3a-1)
wif
2² (0²-2)=24
01 048
daros
D) -6
01-21+01
E)-12
EKG
YAYINCILIK
5.
3
x² +
Bun.
denk
A) x
B) x²
D) X
E) X-
Lise Matematik
İkinci Dereceden Bir Bilinmeyenli Denklem1
2. dereceden denklem ve parabol MATEMATIK
E) 3
(3a-1)(3a-1)
4.
(1 + m)x² + 6x + m² - 9 = 0 denkleminin köklerinden biri pozitif
diğeri negatif olmak üzere iki gerçel kökü varsa m'nin alabile-
ceği değerler kümesi aşağıdakilerden hangisidir?
A) (-3,-1) U (1,3)
B) (-∞, -3) U (-1,3)
C) (-3,3)
D) (-∞, -1) U (3,0)
E)
(-∞, -3) U (1,3)
Lise Matematik
İkinci Dereceden Bir Bilinmeyenli DenklemB
00
00
-of
B)-1 C) 0
24. İki gerçel kökü olan x² - 2x + a-1=0
denkleminin kökleri çarpımı
d-1/
x² - 4x + @-5 = 0
denkleminin bir köküdür.
Buna göre, a kaçtır?
A) -2
00
1962
16-16
D) 3
E) 5
nib:664 abrimioid noga
usoy no
DA CUBA (a²-2d+1) - 4 (d-1) + a
ev 8A
Lise Matematik
İkinci Dereceden Bir Bilinmeyenli Denklem14. x eksenini kestiği noktaların tam sayı olduğu
f(x) = ax²+bx+c parabolünün x eksenine göre
simetriği g(x) parabolüdür.
f(x) < g(x)
eşitsizliğini sağlayan tam sayılar 3, 4, 5 ve 6 dır.
f(1) = 12 olduğuna göre, g(0) kaçtır?
A)-28
B)-14
C) 14
D) 28
E) 32
16. İki
bö
sa
sa
B
S
Lise Matematik
İkinci Dereceden Bir Bilinmeyenli Denklem1.
Dik koordinat düzleminde, [0, 2] aralığında tanımlı
bir f fonksiyonunun grafiği aşağıda verilmiştir.
AY
N
y=f(x)
X
O
1
2
Buna göre,
I. (fof)(x) = 2
II. (fof)(x) = 1
III. (fof)(x) = 0
eşitliklerinden hangileri yalnızca iki farklı x de-
ğeri için sağlanır?
Lise Matematik
İkinci Dereceden Bir Bilinmeyenli Denklem12.
11.
√169=13
f(x) = 4x² + mx + 4 S
parabolü Ox eksenine, eksenin pozitif tarafında teğet ol-
duğuna göre, m kaçtır?
(
A) 8
B) 6
A-0
V
C) 4
25
169
m² ²4.41=0
m2
D) -6
-6620
m² 64
M=A
m=-8
Tene polstr
E) -8
Lise Matematik
İkinci Dereceden Bir Bilinmeyenli Denklem2.
XI=
==
X
=b
B)-33
2²-(4-3²).
X
1/1/1 = a + b
x²-4.33.x+37 = 0
denkleminin köklerinden biri aşağıdakilerden hangisidir?
A) -34
C) 3²
D) 34
E) 35
x + 81.3³=0
2x²58
3x=7
3x--7
3
2
ie
9.9
5. Köklerinden biri 3 + 2√3 olan ra
dereceden denklem aşağıdakile
A) x² - 6x + 4 = 0
C) x² + 6x + 4 = 0
3D YAYINLARI
2
E) x²-6
27
281
27
1216
21 8 3
6. Aşağıda Venn şer
Sayıların
Lise Matematik
İkinci Dereceden Bir Bilinmeyenli Denklem6.
5.
y=x²-7x+m+1
parabolü ile y=x+2 doğrusu birbiri-
ne teğet olduğuna göre, teğet değme
noktasının koordinatları aşağıdakiler-
den hangisidir?
A) (3,5)
B) (4, 6)
D) (6, 8)
x28x₁4m-l
A-62-100
x27x+18
-9
-2
y=x²-3x - 1
E) (7, 9)
C) (5, 7)
64-4(3-1)
struntht.
thes
um torz
MAY
Lise Matematik
İkinci Dereceden Bir Bilinmeyenli Denklem6.
5.
y = x² + 1
parabolü ile y = 2x + 5 doğrusunun
kesişim noktalarının apsisleri toplamı
kaçtır?
A)-2
B)-1
C) 0
NOVE
D) 1
E) 2
y=x²-2x-2
parabolü ile y = x + m doğrusunun iki
farklı kesişim noktası olduğuna göre,
REGR
m nin en küçük tam sayı değeri kaç-
tır?
A) -6 B)-5 C) -4 D) -3 E) -2
Lise Matematik
İkinci Dereceden Bir Bilinmeyenli DenklemLER-PARABOL- EŞİTSİZLİKLER
www.aydinyayinlari.com.tr
ÖRNEK 30
- 3x + m = 0 denkleminin kökleri ve
X₁₂
x2
|x²-x²=6
olduğuna göre, m kaçtır?
ÖRNEK 31
x² - - -
2
x₂ dir.
(2m 4)x 15 = 0 denkleminin kökleri x, ve
x₁ = -3 olduğuna göre, m-
dir.
-X₂
farkı kaçtır?