Hayalindeki netler. İhtiyacın olan her şey. Tek platform.

Soru çözüm, yayın seti, birebir rehberlik, canlı dersler ve daha fazlası Kunduz’da. Şimdi al, netlerini artırmaya başla.

Rutin Olmayan Problemler Soruları

(5
Aşağıda, yüksek atlama yarışmasına katılan bir sporcunun
yaptığı atlayışta t. saniyedeki yerden yüksekliği,
h(t) = 24t-6t2
%3D
fonksiyonuyla belirlenmiştir.
Buna göre, bu sporcunun havada kaldığı süre aşağı-
dakilerden hangisidir?
A) 3
B) 4
C) 5
D) 6
E) 7
24
2
ACİLMAEMATIK
Lise Matematik
Rutin Olmayan Problemler
(5 Aşağıda, yüksek atlama yarışmasına katılan bir sporcunun yaptığı atlayışta t. saniyedeki yerden yüksekliği, h(t) = 24t-6t2 %3D fonksiyonuyla belirlenmiştir. Buna göre, bu sporcunun havada kaldığı süre aşağı- dakilerden hangisidir? A) 3 B) 4 C) 5 D) 6 E) 7 24 2 ACİLMAEMATIK
20. Dört arkadaştan her biri kendisi dışındaki diğer üç
arkadaşının yaşları toplamını hesaplamıştır. Hesap-
lanan sayılar 16, 26 ve 28 biçiminde üç farklı sayi-
dan oluşmaktadır.
Buna göre, yaşları eşit olan iki arkadaştan biri-
nin yaşı kaçtır?
D) 12
E) 14
C) 10
B) 8
A) 6
Lise Matematik
Rutin Olmayan Problemler
20. Dört arkadaştan her biri kendisi dışındaki diğer üç arkadaşının yaşları toplamını hesaplamıştır. Hesap- lanan sayılar 16, 26 ve 28 biçiminde üç farklı sayi- dan oluşmaktadır. Buna göre, yaşları eşit olan iki arkadaştan biri- nin yaşı kaçtır? D) 12 E) 14 C) 10 B) 8 A) 6
31. a? <a
1
1
b2
olduğuna göre aşağıdakilerden hangisi kesin-
likle doğrudur?
B) b< 1
A) a > 1
C)a.b> 1
D a + b > 1
E) a b
Lise Matematik
Rutin Olmayan Problemler
31. a? <a 1 1 b2 olduğuna göre aşağıdakilerden hangisi kesin- likle doğrudur? B) b< 1 A) a > 1 C)a.b> 1 D a + b > 1 E) a b
31.
Marangoz Ahmet Usta dikdörtgenler prizması
1
biçimindeki kerestenin ini kestiğinde orta
V2
noktasının cm kaydığını görmüştür.
2
Buna göre kerestenin boyu yaklaşık kaç cm
olabilir?
A) 9,5
B) 10,2
C) 11
D) 11,4
E) 12,7
MATEMATIK
Ülkemizde bazı köylerde aynı ad ve
himok kisi bulunmaktadır. Bir A
Lise Matematik
Rutin Olmayan Problemler
31. Marangoz Ahmet Usta dikdörtgenler prizması 1 biçimindeki kerestenin ini kestiğinde orta V2 noktasının cm kaydığını görmüştür. 2 Buna göre kerestenin boyu yaklaşık kaç cm olabilir? A) 9,5 B) 10,2 C) 11 D) 11,4 E) 12,7 MATEMATIK Ülkemizde bazı köylerde aynı ad ve himok kisi bulunmaktadır. Bir A
Uygun şartlarda x ve y sayılarının aritmetik ortala-
ması A=X+y
ve geometrik ortalaması G = 1x.y
dir.
M = m2 + n2 + 34
6
N = 6m + 10n
sayılarının aritmetik ortalaması geometrik orta-
lamasına eşit olduğuna göre, m ile n nin aritme-
tik ortalaması kaçtır?
A)3
B) 4
C)5
D) 6
E)7
Lise Matematik
Rutin Olmayan Problemler
Uygun şartlarda x ve y sayılarının aritmetik ortala- ması A=X+y ve geometrik ortalaması G = 1x.y dir. M = m2 + n2 + 34 6 N = 6m + 10n sayılarının aritmetik ortalaması geometrik orta- lamasına eşit olduğuna göre, m ile n nin aritme- tik ortalaması kaçtır? A)3 B) 4 C)5 D) 6 E)7
x + y + z = 0
X. y.z = 19
olduğuna göre, xº + y + z toplamı kaçtır?
A) 5
B)
C) 19
D) 23
€) 57
Lise Matematik
Rutin Olmayan Problemler
x + y + z = 0 X. y.z = 19 olduğuna göre, xº + y + z toplamı kaçtır? A) 5 B) C) 19 D) 23 €) 57
a = 75 ve b = 57 olmak üzere,
20.
+6) 12
(a + 7
ifadesi a'nın azalan kuvvetlerine göre açıldığında
baştan 6. terim aşağıdakilerden hangisi olur?
(12)
(12)
B)
7
5
A)
.3535
2525
(12).35
(13)4
C)
1.4949
D)
(12
5
1.3512
E)
E
(169).3524
Lise Matematik
Rutin Olmayan Problemler
a = 75 ve b = 57 olmak üzere, 20. +6) 12 (a + 7 ifadesi a'nın azalan kuvvetlerine göre açıldığında baştan 6. terim aşağıdakilerden hangisi olur? (12) (12) B) 7 5 A) .3535 2525 (12).35 (13)4 C) 1.4949 D) (12 5 1.3512 E) E (169).3524
6.
8.
-B
Yukarıda verilen, O merkezli dairesel pistin etrafında koşan
Arda ve Berk ile ilgili aşağıdaki bilgiler verilmiştir.
Yek
pro
• Arda A noktasından, Berk ise B noktasından saat 10:00'da
aynı anda zıt yönlerde koşmaya başlamışlardır.
• Arda ve Berk 8. kez karşılaştıklarında saat 12:35'tir.
Buna göre, Arda ve Berk ilk kez karşılaştıklarında saat
kaçtır?
2)
A) 10:05
B) 10:10
C) 10:15
D) 10:20
E) 10:25
x+
Lise Matematik
Rutin Olmayan Problemler
6. 8. -B Yukarıda verilen, O merkezli dairesel pistin etrafında koşan Arda ve Berk ile ilgili aşağıdaki bilgiler verilmiştir. Yek pro • Arda A noktasından, Berk ise B noktasından saat 10:00'da aynı anda zıt yönlerde koşmaya başlamışlardır. • Arda ve Berk 8. kez karşılaştıklarında saat 12:35'tir. Buna göre, Arda ve Berk ilk kez karşılaştıklarında saat kaçtır? 2) A) 10:05 B) 10:10 C) 10:15 D) 10:20 E) 10:25 x+
t=8
eis
Yayınlar
Sot = x
900. 100t 500
isus
6
Örnek
Hızı saatte 120 km olan bir araç A kentinden B kentthe doğru
yolculuğu sırasında yarım saat mola vererek, harekete başladık-
tan 3 saat 45 dakika sonra B kentine varıyor.
Buna göre, A ve B kentleri arası kaç km'dir?
bodic 120km
015
19
$2
ens
Lise Matematik
Rutin Olmayan Problemler
t=8 eis Yayınlar Sot = x 900. 100t 500 isus 6 Örnek Hızı saatte 120 km olan bir araç A kentinden B kentthe doğru yolculuğu sırasında yarım saat mola vererek, harekete başladık- tan 3 saat 45 dakika sonra B kentine varıyor. Buna göre, A ve B kentleri arası kaç km'dir? bodic 120km 015 19 $2 ens
TEMEL MATEI
ZVERE
3. İlker aşağıda gösterilen beş parçalı yapbozu hazırlamış-
tir
Vacances
L
K
R=CEabhi
E = Los +2
E
R
Kare şeklindeki bu yapboz 25 eş karesel bölgeye ayrıl-
mıştır. Parçaların girintili ve çıkıntılı bölümlerinin her biri
birbirine eş ve bu bölümlerin her birinin uzunluğu yapbo-
zun bir kenar uzunluğunun ü kadardır.
Buna göre, bu parçalardan çevresi en uzun olanı
aşağıdakilerden hangisidir?
BL CK D) E E) R
32
ias
35 t
18thh
4. Aşağıdaki tablonun birinci satır ve birinci sütununun kesi-19
şimi olan kutuya 1 yazıldıktan sonra tablo belli bir kurala
göre doldurulmuştur.
1+62 7+hh
57
t-t
Lise Matematik
Rutin Olmayan Problemler
TEMEL MATEI ZVERE 3. İlker aşağıda gösterilen beş parçalı yapbozu hazırlamış- tir Vacances L K R=CEabhi E = Los +2 E R Kare şeklindeki bu yapboz 25 eş karesel bölgeye ayrıl- mıştır. Parçaların girintili ve çıkıntılı bölümlerinin her biri birbirine eş ve bu bölümlerin her birinin uzunluğu yapbo- zun bir kenar uzunluğunun ü kadardır. Buna göre, bu parçalardan çevresi en uzun olanı aşağıdakilerden hangisidir? BL CK D) E E) R 32 ias 35 t 18thh 4. Aşağıdaki tablonun birinci satır ve birinci sütununun kesi-19 şimi olan kutuya 1 yazıldıktan sonra tablo belli bir kurala göre doldurulmuştur. 1+62 7+hh 57 t-t
TEST
KOLAY
27
ORTA
ZOR
PROBLEMLERİ
7.
1
2
3 4
5 6 7
8
Yukarıda 1'den 8'e kadar numaralandırılmış kartların görün-
meyen yüzlerine aşağıdaki kurallara uygun sayılar yazıyor.
Önce 1 ve 2 numaralı karta birer doğal sayı yazılıyor.
Sonra 3 numaralı karttan başlanarak her bir karta
kendinden önceki ilk iki karta yazılan sayıların toplamı
yazılıyor.
4 numaralı karta 12 sayısı ve 7 numaralı karta 40 sayısı
yazıldığına göre, 8 numaralı karta yazılan sayı kaçtır?
A) 58
B) 60
C) 66
D) 70
E) 84
Lise Matematik
Rutin Olmayan Problemler
TEST KOLAY 27 ORTA ZOR PROBLEMLERİ 7. 1 2 3 4 5 6 7 8 Yukarıda 1'den 8'e kadar numaralandırılmış kartların görün- meyen yüzlerine aşağıdaki kurallara uygun sayılar yazıyor. Önce 1 ve 2 numaralı karta birer doğal sayı yazılıyor. Sonra 3 numaralı karttan başlanarak her bir karta kendinden önceki ilk iki karta yazılan sayıların toplamı yazılıyor. 4 numaralı karta 12 sayısı ve 7 numaralı karta 40 sayısı yazıldığına göre, 8 numaralı karta yazılan sayı kaçtır? A) 58 B) 60 C) 66 D) 70 E) 84
borcunun tamamını bitirmeyi planlıyor. İlk 5
Alper, her ay 50 TL ödeyerek arkadaşına olan
boyunca her ay 40 TL, sonraki her ay ise 160 TL
adeyerek borcunun tamamını planladığı sürenin
Buna göre, Alper'in arkadaşına olan toplam
Toplam borc = 100x = 100. 10 = 1000
SORU - CEVAP
ay
yarısında bitiriyor
boreu kaç TL'dir?
A) 400
B) 600
C) 800
D) 1000 E) 1200
Alper borcunu ayda 50 TL ödeyerek 2x ayda bi
timeyi planlasın. O halde toplam borç 2x 50 =
100% TL olur.
5.40 + (x - 5). 160 = 100x olacaktır.
200 160X-800 = 100x
160X-600 = 100X
60x = 600
x= 10
10
CEVAP
Lise Matematik
Rutin Olmayan Problemler
borcunun tamamını bitirmeyi planlıyor. İlk 5 Alper, her ay 50 TL ödeyerek arkadaşına olan boyunca her ay 40 TL, sonraki her ay ise 160 TL adeyerek borcunun tamamını planladığı sürenin Buna göre, Alper'in arkadaşına olan toplam Toplam borc = 100x = 100. 10 = 1000 SORU - CEVAP ay yarısında bitiriyor boreu kaç TL'dir? A) 400 B) 600 C) 800 D) 1000 E) 1200 Alper borcunu ayda 50 TL ödeyerek 2x ayda bi timeyi planlasın. O halde toplam borç 2x 50 = 100% TL olur. 5.40 + (x - 5). 160 = 100x olacaktır. 200 160X-800 = 100x 160X-600 = 100X 60x = 600 x= 10 10 CEVAP
5
Lodo, lai do
(x=220lt)
2000
25.
Doğru yapılan
kolye
Yanlış yapılan
kolye
Eda'nın elinde 90 tane mavi 70.tane sarı boncuk vardır.
Eda bu boncukları kullanarak 3 mavi ve 2 sarı boncuk-
tan oluşan kolyeler yapmak istiyor. Eda, 30 tane kolye
yaptıktan sonra elinde kalan sar boncukların sayısının
elinde kalan mavi boncukların sayısının 2 katından
1 fazla olduğunu görüyor ve yaptığı kolyelerin bazıların
da 2 tane mavi 3 tane sarı bilye kullandığını fark ediyor.
Buna göre, Eda yaptığı kolyelerin kaçında 3 mavive
2 sarı boncuk kullanmıştır?
A) 24
C) 26
B) 25
gom
D) 27
70 S
E) 28
Lise Matematik
Rutin Olmayan Problemler
5 Lodo, lai do (x=220lt) 2000 25. Doğru yapılan kolye Yanlış yapılan kolye Eda'nın elinde 90 tane mavi 70.tane sarı boncuk vardır. Eda bu boncukları kullanarak 3 mavi ve 2 sarı boncuk- tan oluşan kolyeler yapmak istiyor. Eda, 30 tane kolye yaptıktan sonra elinde kalan sar boncukların sayısının elinde kalan mavi boncukların sayısının 2 katından 1 fazla olduğunu görüyor ve yaptığı kolyelerin bazıların da 2 tane mavi 3 tane sarı bilye kullandığını fark ediyor. Buna göre, Eda yaptığı kolyelerin kaçında 3 mavive 2 sarı boncuk kullanmıştır? A) 24 C) 26 B) 25 gom D) 27 70 S E) 28
10. Aşağıdaki tabloda sayılar belli bir kurala göre yazıl-
mıştır.
6 318
4
8 24
7
9 32
5
1
X
www.isemkitap.com
Buna göre, x kaçtır?
A) 5
B) 8
C) 10
D) 12 E) 15
Lise Matematik
Rutin Olmayan Problemler
10. Aşağıdaki tabloda sayılar belli bir kurala göre yazıl- mıştır. 6 318 4 8 24 7 9 32 5 1 X www.isemkitap.com Buna göre, x kaçtır? A) 5 B) 8 C) 10 D) 12 E) 15
içinde basamak sayıları aynı olan iki doğal sayının yazılı
olduğu
sembolünün değeri, bu sayıların
aynı basamaklarında bulunan rakamların farklarının
mutlak değerleri toplamına eşittir.
Örnek: 481 503 = MÖSKM+11-31 = 11
Buna göre,
102 ABC = 1
eşitliğini sağlayan üç basamaklı ABC doğal
sayılanının toplam kaçtır?
I l-AI+10-B1+12
A)
452
2-4 =
B)
486
518
540
D)
564
E)
Lise Matematik
Rutin Olmayan Problemler
içinde basamak sayıları aynı olan iki doğal sayının yazılı olduğu sembolünün değeri, bu sayıların aynı basamaklarında bulunan rakamların farklarının mutlak değerleri toplamına eşittir. Örnek: 481 503 = MÖSKM+11-31 = 11 Buna göre, 102 ABC = 1 eşitliğini sağlayan üç basamaklı ABC doğal sayılanının toplam kaçtır? I l-AI+10-B1+12 A) 452 2-4 = B) 486 518 540 D) 564 E)
8.
Soruiar
2.
4
1.
H.
II.
E
H.
III.
E
H.
E
E
IV.
H.
E
E
H
V.
E
E
H.
Bir kişiye doğru olanlara Evet (E), yanlış olanlara
Hayır (H) yazarak cevaplayacağı beş soru verili-
yor, Bu beş sorunun doğru cevaplarının, tablo-
da verilen beş cevaplama biçiminden biri olduğu
söyleniyor. Bu kişi 3. sorunun doğru cevabının H
olduğunu biliyor. 2. sorunun doğru cevabını da bu-
lunca, başkalarına bakmadan uygun cevaplama
biçimini doğru olarak seçiyor.
Buna göre, doğru olan cevaplama biçimi han-
gisidir?
A) I
B) ||
C) II
D) IV
E) V
(1981 - ÖS)
Cevap Biçimleri
3.
Lise Matematik
Rutin Olmayan Problemler
8. Soruiar 2. 4 1. H. II. E H. III. E H. E E IV. H. E E H V. E E H. Bir kişiye doğru olanlara Evet (E), yanlış olanlara Hayır (H) yazarak cevaplayacağı beş soru verili- yor, Bu beş sorunun doğru cevaplarının, tablo- da verilen beş cevaplama biçiminden biri olduğu söyleniyor. Bu kişi 3. sorunun doğru cevabının H olduğunu biliyor. 2. sorunun doğru cevabını da bu- lunca, başkalarına bakmadan uygun cevaplama biçimini doğru olarak seçiyor. Buna göre, doğru olan cevaplama biçimi han- gisidir? A) I B) || C) II D) IV E) V (1981 - ÖS) Cevap Biçimleri 3.