Sayma Soruları
Lise Matematik
Sayma1. Bir bankadaki 2 bankamatik Öönünde kuyrukta bekleyenler
vardır.
1. bankamatiğin önünde 5, 2. bankamatiğin önünde
6 bekleyen kişi olmak üzere toplam 11 kişi arasından
rastgele 3 kişi seçiliyor.
Seçilenlerden en az ikisinin 1. bankamatiği bekleyen
kişilerden olduğu biliniyorsa üçünün de
1. bankamatiği bekleyenlerden olma olasılığı kaçtır?
C) =//
(A) = 1/2
6
10
D)
10
B)
5
E) 1/4
Lise Matematik
Sayma= 75
30
13
E) 25
9
25. Rakamları farklı iki basamaklı AB asal sayısının rakam-
ları yer değiştirdiğinde oluşan BA iki basamaklı sayısı
da asal sayı oluyorsa AB iki basamaklı sayısına "i-Asal"
sayı denir.
$39$ $ 4000₂
Buna göre, iki basamaklı doğal sayılardan kaç tane-
si İ-Asal'dır?
A) 3
Farss
B) 4
C) 5
$0
D) 6
E) 7
DBEUG
71,73,79, 97
9. SINIF ORİJİNAL MATEMATIK- ODF
9. SINIF - ORİJİNAL MATEMATİK - ODF
27. İki basamaklı AB doğal
yısından 63 fazladır.
Buna göre, bu şartı sağ
sayılarının toplamı kaç
173 190 C)
A3=BA+63
10A+B=103+00
9A-03=63
A-B=7
9-2
8-1
7-0
Lise Matematik
Saymaİki kutudan birinde üzerinde çekgenlerin çizili olduğu altı
kart, diğerinde ise üzerinde 2'den 7'ye kadar numaraların
yazılı olduğu altı kart bulunmaktadır.
A
A) 772
18
B)
5
12
2
(6)- 161 = S(E1-Q1
5
Bu kutuların her birinden rastgele birer kart çekiliyor.
Buna göre, kartlardan birinde çizili olan çokgenin kenar
sayısının diğer kartta yazılı olan sayıdan büyük olma
olasılığı kaçtır?
D)
3
Z.D | B.A 9.A | 10.8 11.8
6
17
36
41
4
12.D
7
1432
72
36
Lise Matematik
SaymaTU
SAYMA VE OLASILIK (OLASILIK-1)
Durum Sayısı
rum Sayısı
4.
İki zar aynı anda atılıyor.
Zarlardan bir tanesinin 3 geldiği bilindiğine göre, diğeri-
ninde 3 gelme olasılığı kaçtır?
3
B) 1
A) 1
11
(4). (1)
Test
12
C) D)
E)
Lise Matematik
Sayma= bas-
aynı
13.
71
4:21
82
12 11 3 1/4
21,
31.
5/7
Yukarıdaki iki torbanın birinden seçilen bir topun torbanın
rengiyle aynı olma olasılığı kaçtır?
B) -—-/7
S
3
C) -34
14
35
+
D) 2²/7
R)
76
76
E) 5/4
14
12
/3\/5)+6
Lise Matematik
Saymare,
3
7
Ankora Younaalik
A, B ve C ayrık olaylarından oluşan bir örnek uzayda
P(A) < P(B) < P(C)
PE)) P(B)) P(A)
ifadeleri veriliyor.
12
52
Buna göre, P(C) değeri aşağıdakilerden hangisi olabi-
lir?
A)
P(A) =
2²77
3/1/20
B)
3
14
9
42
C)
11
14
33
52
D)
8
21
(21)
16
42
E)
.2
sto
Lise Matematik
SaymaPAAS) = 2/1/20
A ve B olayları aynı örnek uzayın olaylan olmak üzere,
2
5
P(A'n B) =
3
7
eşitlikleri veriliyor.
Buna göre, P(ANB) değeri kaçtır?
A) 1/1/1
P(B) =
B)
6
35
De
C)
3/15 D)/²/5
37
1
where Yayıncılık
Lise Matematik
Sayma16 Enes eşit büyüklükte iki daire parçası kesmiş ve bu da-
irelerden bir tanesini 12 eş dilime, diğerini 6 eş dilime
ayırmıştır.
6
12 eş dilime ayırdığı daireyi şekildeki gibi boyayan Enes,
6 eş dilime ayırdığı dairenin ise şekildeki gibi bir dilimini
kesip atmıştır. Bu iki daireyi orta noktalarından bir rapti-
ye ile birleştirmiş ve orta noktası etrafında dönebilen bir
kartela oluşturmuştur.
12
Kartela her seferinde tam olarak iki renk görünecek
şekilde döndürüldüğünde kırmızı rengin görünme
olasılığı kaçtır?
A)
2
11
12
B) 41
12:11
2
(C) 1/10
Ž
D) 1/1
2
Diğer sayfaya geçiniz.
Lise Matematik
Sayma1. Bir okulda güvenlik görevlisi olarak çalışan Aykut Bey, rast-
gele haftanın üç günü höbet tutmaktadır.
Buna göre, Aykut Bey'in herhangi bir haftanın cuma
ve cumartesi günlerinden yalnız birinde nöbet tutma
olasılığı kaçtır?
A) 1/17
E) -9/17
B)
2
7
6
7765-65
D) -4/
Lise Matematik
SaymaSekiz basamaklı 38503 760 sayısının rakamlarının yerleri
değiştirilerek yazılabilen sekiz basamaklı doğal sayılardan
biri seçiliyor.
r
Seçilen sayıda 5 rakamının sağında herhangi bir yerde
7 olduğu bilindiğine göre, bu sayının çift sayı olma ola-
sılığı kaçtır?
5
A) —
14
B)
8
21
27
c) ²/2
D)
17
42
4.
Semih iki zan ve Er
yeşil olan iki zan aw
Semih'in attığı za
laminin 7 veya E
renklerin aynı a
A)
Lise Matematik
SaymaA
TEMATİK TESTİ
yrılan kısmına işaretleyiniz.
4. m>n
AX4
2
4
m! ≤n!.4
koşulunu sağlayan kaç tane (m, n) ikilisi var-
dır?
3
4
2
3
A
B) 5
4.3.2
016 DX7
21
At the
fit
41
A
P₁, P₂, P3, ... asal sayılar olmak üzere
29
E) 8
n₁, n₂, n, ... pozitif tam sayı olsun.
A = P.P₂² P33...
şeklinde asal carpanlarına ayrilmis olsun. A'yı tar
Lise Matematik
SaymaAYINEVI
N
-1
13. 3 siyah, 4 beyaz ve 2 mavi özdeş bilyenin bulun-
duğu bir torbadan rastgele üç bilye çekiliyor.
Çekilen bilyelerin üçünün de farklı renkte olma
olasılığı kaçtır?
>)/¾/7
A) = /2 B
2
D) 1/17 E)
Lise Matematik
Sayma18
11. Etiket fiyatı üzerinden %30 indirim ile alınan bir
mal etiket fiyatı üzerinden %16 indirim ile satılı-
yor.
Buna göre, kâr oranı yüzde kaçtır?
D
ATTA B) 15
C) 16
D) 20
70X 34X
105
E) 22
15. Bir
aylı
kac
A) 5
Lise Matematik
Saymaorbadan
çeken
( 4 ) ( 2 ) + ( ² ) 1 6₂ )
Regumpula
3. Hileli bir zarda bir atışta asal sayı gelme olasılığı diğer
sayıların gelme olasılığının iki katıdır.
Buna göre zar bir kez atıldığında üst yüze gelen
sayının çift veya asal olma olasılığı kaçtır?
2/9
A) ²/
17
B)
69
2
2
G
50 312
D)
No 54
1)
IRLAR
E)
topun yes
1
A) 6
6. A= {1.
çantas
belirle
olduğ
olasıl
A)
18
12
Lise Matematik
Sayma8 tanesi
eklerden
olduğu
45-2=30
12. İçinde renkleri dışında aynı özelliklere sahip 4 kırmızı ve 5
beyaz top bulunan bir torbadan rastgele bir top çekilip yerine
diğer renkten iki top konuluyor.
Buna göre torbadan tekrar rastgele çekilen bir topun ilk
çekilen top ile aynı renkte olma olasılığı kaçtır?
A)
145
16
K
B)
3
5
22
D)
2|9
E)
255
15
2.
A:
ya
Lise Matematik
Sayma21 Pelin'in hesap makinesi, "3" tuşuna her basıldığında
bunu
♦
1
6
1
3
1
2
olasılıkla 3
23
olasılıkla 4
olasılıkla 6
olarak algılamaktadır.
Pelin sadece "3" numaralı tuşu bozuk olan bu he-
sap makinesiyle
(132)
işlemini yapacaktır.
Buna göre Pelin'in bu işlemin sonucunu 22 bul-
ma olasılığı kaçtır?
A) 1/32
B)
1
4
C)
MATEMATIK
1
9
D)
5
12
E)
7
24
2