Üslü İfadelerde İşlemler Soruları
Lise Matematik
Üslü İfadelerde İşlemler1
Önceliği - II
1
1
1
4.
Simge Öğretmen
Simge Öğretmenin tahtaya yazdığı sorunun
cevabını aşağıdaki öğrencilerden hangisi
doğru bulmuştur?
A)
C)
Özlem
Emrah
(24.35 +63 +9² ÷ 3)º
işleminin sonucu
kaçtır?
1200
1
B)
D)
Eren
Esra
600
0
Ör
Aş
ler
ya
ge
Lise Matematik
Üslü İfadelerde İşlemleraktif oğrenme yayınlan
23" @
10. Ov
şekillerinden herbiri birbirinden farkl
rer rakamı temsil etmektedir. Bu şekillerle verilen üç b
maklı sayılar ile bu sayılanın karşılıkları aşağıda karışıl
şekilde veriliyor
7
*
●
.
277
733
Yukarıdaki sayı şekil eşleştirmelerine göre,
772
223
+00%+
toplamının değeri kaçtır?
A) 560 B) 785 C) 995 D) 783
AB = AB + B
232
11. ABC üç basamaklı ve AB iki basamaklı bir sayıdır.
ABC=ABC + BC + C
=A
1)9
işlemleri veriliyor.
99 5
(161 461+1
62
E)
Lise Matematik
Üslü İfadelerde İşlemlerKodlama eğitimi dersi proje ödevi olarak geliştirilen
kodlama ile ilgili olarak aşağıdaki bilgiler verilmiştir:
Kodlamada sayı bir basamaklı ise sayıyı faktöriyelini
alarak okur, eğer iki basamaklı ise sayının kendisini
okur.
Bu kodlamaya girilen sayı ve işlemler
(56.6+5.42): a n
şeklindedir ve sonuç bir sayma sayısıdir.
a en az iki basamaklı doğal sayı olduğuna
göre kaç farklı değer alır?
7
A) 100
B) 92 C) 91
56.61 +5¹,12
D) 50
7! (2+1)
13
27
E) 45
71.9
Lise Matematik
Üslü İfadelerde İşlemler5. Zümra aralarında 1 birim olan ardışık tam sayıların yazılı olduğu şeritlerden oluşturduğu düzenekte ibreleri sağa ya da
sola hareket ettirerek üslü sayılar oluşturacaktır.
sol
-4
-3 -2 -1 0
-3
-2
Üs İbresi
-1
1
Taban İbresi
2
2
13
3
15
4 5
41
5
sağ
Örneğin; üs ibresi 2 birim sağa, taban ibresi 3 birim sola hareket ettirirse (-3)2 üslü ifadesini elde eder.
Buna göre düzenek görseldeki konumdayken düzenekte görünen sayılarla oluşturulabilecek 0 ile 1 arasındaki
en küçük üslü ifadeyi elde etmek için ibreler toplam kaç birim hareket ettirilmelidir?
A) 9
B) 8
C) 7
D) 6
Lise Matematik
Üslü İfadelerde İşlemler. Uzun kenarı 44 cm ve kısa kenarı 40 cm olan dikdörtgen şeklindeki bir kartondan kısa kenar uzunlukları santimetre
cinsinden 2'in pozitif tam sayı kuvveti olan ikisi eş, biri farklı üç dikdörtgen parçaya ayrılıyor.
44 cm
40 cm
Buna göre turuncu renkli kartonun ön yüzünün alanı en fazla kaç cm²'dir?
A) 211
B) 212
C) 213
D) 32.210
Lise Matematik
Üslü İfadelerde İşlemler8.
Tabanı ve üssü birbirine eşit olan üslü sayılara
"muhteşem üslü sayılar" denir.
Buna göre,
1. 224
II. 414
III. 9162
ifadelerinden hangileri muhteşem üslü sayı şeklinde
yazılabilir?
A) Yalnız I
B) I ve II
D) II ve III
C) I ve III
E) I, II ve III
Lise Matematik
Üslü İfadelerde İşlemlerMatematik
17. Aşağıda santimetre cinsinden uzunlukları birbirinden farklı beş adet metal boru verilmiştir.
ul.
Bu boruların boy uzunlukları ile ilgili aşağıdaki bilgiler verilmiştir.
Boy uzunlukları 50 cm'den kısadır.
b, 1'den farklı bir doğal sayı olmak üzere, santimetre cinsinden boy uzunlukları ab şeklinde yazılabilmek-
tedir.
Buna göre, en uzun ve en kısa borunun uzunlukları toplamı en fazla kaç santimetredir?
A) 85
B) 81
C) 74
D) 65
.
SINIF
.
Lise Matematik
Üslü İfadelerde İşlemler12. Aşağıda, bir pencerenin önünde güvercinlerin beslenme-
si için bırakılmış mısır kapları gösterilmiştir.
angub insbri
27
V
|
||
|||
IV
Il nolu kapta 27 tane mısır vardır.
Kaplarda toplam 297 tane misır vardır.
Birbirine komşu herhangi iki kaptaki mısır sayıları top-
lamı aynıdır.
Buna göre, kaplardaki mısır sayılarının çarpımı kaçtır?
A) 318
B) 320
C) 322
D) 324
E) 327
Lise Matematik
Üslü İfadelerde İşlemler= ₁5.
TEST-3
KK ve LL iki basamaklı doğal sayılar olmak üzere,
KK² + LL² = 605
olduğuna göre, K + L toplamı kaçtır?
A) 3
B) 4
C) 5
D) 6
10K+ K² + 10L + L² = 605
10 (K+L) +K ² + L² = 605
- (x=L) (16+L)
605-K²-L² = K+L
E) 7
bos
SJS
605-(K-L). K+C)
605-1(K-4)-11+x) = 16xx
Lise Matematik
Üslü İfadelerde İşlemler2.
Aşağıda uzunluğu x18 birim olan bir tahta çubuk
verilmiştir.
x18 br
. Mehmet Usta tahtanın sağ tarafındaki ucundan
1 birim tahta kesmiştir.
• Kalan tahtaya x defa kesim yaparak çubuğu eşit
parçalara ayırmıştır.
. Son durumda Mehmet Usta'nın elinde her biri
15 birim olan tahta parçaları vardır.
Buna göre tahta parçasının ilk durumdaki uzunluğu
kaç birimdir?
A) 225 B) 226
C) 255
D) 256 E) 257
Lise Matematik
Üslü İfadelerde İşlemler9
TEMEL KAVRAMLAR
9) a ve b tam sayılar olmak üzere;
3a + 7b +6=0
eşitliğinde a'nın alabileceği en küçük pozitif tam sayı
değeri için (a - b) farkı kaçtır?
A) 8
B) 7
C) 2
D)-3 E)-5
1984
12) a, b t
old
A)
Lise Matematik
Üslü İfadelerde İşlemlerren-
AYI"
jeri
10. 64 tane sınıfı olan bir okulun her sınıfında eşit sayıda öğ-
renci vardır. Yardım kampanyasında okuldaki her öğrenci-
den 45 kr bağış alınmış ve toplam 410kr toplanmıştır.
210
2
Buna göre, okuldaki bir sınıfta kaç öğrenci vardır?
C) 24
D) 32
E) 36
A) 8
B) 16
2¹0 2¹0-2.2¹0-2
2¹03=
IN
Lise Matematik
Üslü İfadelerde İşlemler1
Ali elindeki topu yerden havaya attığında, top 45 birim yük-
seğe çıkıyor. Top, yere değip tekrar yükseldiğinde bir önceki
yüksekliğin yarısı kadar çıkıp tekrar düşüyor.
Buna göre, top 3. defa yere değene kadar düşeyde kaç bi-
rim yol almıştır?
A) 5-210
D) 3.2⁹
B) 3.210
C) 7.210
E) 7.29
Lise Matematik
Üslü İfadelerde İşlemler64 kareden oluşan satranç tahtası üzerine aşağıdaki gibi
sayılar belirli bir kurala göre yazılıyor.
H
8
2 3 4
22
2
6
5
42
22
3 4 5
3 4 5
5
4 5
5 2
3
4
5
5 4
3
.6
62³ 3³ 4 5 5
1
3
C
2
2
7 2² 3² 4² 5 5
1
8
1
1
5 5 4 3 2 8
5 4
3
A B
5 8
5
5
3
4
4
4
6
2
3² 2²
3
3
2
3 2
3
2
6
6
3 2
4 3 2
8
4 5 5 4 3 2 1
C DEFGH
36
Bu karelerde yazılan tüm sayıların çarpımının sonu-
cu M olduğuna göre, M - 1 sayısının sondan kaç ba-
samağı 9'dur?
A) 64 B) 68
C) 70D) 71
109129
300 600
E) 72
182
Lise Matematik
Üslü İfadelerde İşlemleruzere,
3
10 3/4X-61
MATİK
6.
.
AB
A, B, C sıfırdan ve birbirinden farklı rakamlar olmak üzer
AB
AB
CA - (Birler basamağı büyük
dan, küçük olana doğru soldan sağa sırayla sayıları yazı
niz.}
13> CA
olduğuna göre,
enir
AB
A) (AB, BC, CA}
C) (BC, CA, AB}
BC
BC
ak de
dan, küçük olana doğru soldan sağa sırayla sayıları yazı
niz.}
A > B> C
Yukarıda verilen kurallara göre,
JA
BC
ARAR
CA
(AB) = ABBA
B-3.7
CA
E) {CA, AB, BC}
ifadesinin eşiti aşağıdakilerden hangisidir?
TEST
(Onlar basamağı büyük olan-
{CA, BC, AB}
A ve B sıfırdan farklı rakamlar olmak üzere,
B) (AB, CA, BC}
D) (BC, AB, CA}
5. Aşağ
an
öylün
diği ya
Lise Matematik
Üslü İfadelerde İşlemler4.
Bilgi: Bir x pozitif tam sayısının karekökünün yaklaşık
değeri aşağıdaki gibi hesaplanabilir.
• x'ten küçük olup x'e en yakın olan bir tam kare
sayı a,
• x'ten büyük olup x'e en yakın olan bir tam kare sayı
b olsun.
145
x-a+√a/2
X =
b-a
133
145
Buna göre 17 sayısı aşağıdakilerden hangisinin kare-
kökünün yaklaşık değeridir?
A) 71
B) 73
C) 75
86-
D) 77
E) 79
85-8-12 + @