Hayalindeki netler. İhtiyacın olan her şey. Tek platform.

Soru çözüm, yayın seti, birebir rehberlik, canlı dersler ve daha fazlası Kunduz’da. Şimdi al, netlerini artırmaya başla.

Fonksiyon Kavramı ve Gösterimi Soruları

10
7. (a,b) aralığında tanımlı bir f fonksiyonu için
X4, X, € (a, b) için x, <x, iken f(x) > f(x2)
oluyorsa f'ye azalan fonksiyon denir.
• A={1,2,3)
• B = {4,5,6,7,8,9} kümeleri için,
f: A B fonksiyonu tanımlanıyor.
Buna göre, kaç tane azalan f fonksiyonu yazıla-
bilir?
B) 30
A) 35
C) 25
D) 20
E) 15
Lise Matematik
Fonksiyon Kavramı ve Gösterimi
10 7. (a,b) aralığında tanımlı bir f fonksiyonu için X4, X, € (a, b) için x, <x, iken f(x) > f(x2) oluyorsa f'ye azalan fonksiyon denir. • A={1,2,3) • B = {4,5,6,7,8,9} kümeleri için, f: A B fonksiyonu tanımlanıyor. Buna göre, kaç tane azalan f fonksiyonu yazıla- bilir? B) 30 A) 35 C) 25 D) 20 E) 15
f(x) =(a -1)x+4
sabit fonksiyon olduğuna göre, a kaçtır?
AT
B) 2
C)3
D) 4
E) 5
Lise Matematik
Fonksiyon Kavramı ve Gösterimi
f(x) =(a -1)x+4 sabit fonksiyon olduğuna göre, a kaçtır? AT B) 2 C)3 D) 4 E) 5
Fonksiyonlarda Bileşke İşlemi
f(x) = 2x – 1
g(x) = x2 – 2x
(gof)(x) = ax2 + bx + c
olduğuna göre, abc çarpımı kaçtır?
A) -112 B) –96 CO D) 96
E) 112
Lise Matematik
Fonksiyon Kavramı ve Gösterimi
Fonksiyonlarda Bileşke İşlemi f(x) = 2x – 1 g(x) = x2 – 2x (gof)(x) = ax2 + bx + c olduğuna göre, abc çarpımı kaçtır? A) -112 B) –96 CO D) 96 E) 112
3. f(x) = 7 - 2x ise
(fof)(-1) değeri kaçtır?
A) -11
B)-9
C) O
D) 9
E) 11
Lise Matematik
Fonksiyon Kavramı ve Gösterimi
3. f(x) = 7 - 2x ise (fof)(-1) değeri kaçtır? A) -11 B)-9 C) O D) 9 E) 11
Aşağıdaki grafikler R den R ye tanımlı fonksiyonlara aittir. Buna göre aşağıdakilerden hangisinin
tersi de bir fonksiyondur?
Lise Matematik
Fonksiyon Kavramı ve Gösterimi
Aşağıdaki grafikler R den R ye tanımlı fonksiyonlara aittir. Buna göre aşağıdakilerden hangisinin tersi de bir fonksiyondur?
A, B ve C birbirinden farklı kümeler olmak üzere,
f,g ve h fonksiyonlarının tanım ve değer kümeleri
aşağıda verilmiştir.
f: AB
g:B → C
h: B→ A
Buna göre,
I. fog
II. gof
III. foh
IV. hof
V. goh-1
ifadelerinden hangileri tanımlıdır?
Llve I
B) I, I ve V
D) II, II, IV ve V
C) V veV
E) 1, Il ve V
REDMI NOTE 8
AI QUAD CAMERA
Lise Matematik
Fonksiyon Kavramı ve Gösterimi
A, B ve C birbirinden farklı kümeler olmak üzere, f,g ve h fonksiyonlarının tanım ve değer kümeleri aşağıda verilmiştir. f: AB g:B → C h: B→ A Buna göre, I. fog II. gof III. foh IV. hof V. goh-1 ifadelerinden hangileri tanımlıdır? Llve I B) I, I ve V D) II, II, IV ve V C) V veV E) 1, Il ve V REDMI NOTE 8 AI QUAD CAMERA
-20-1=2
2a=-3
11. AB iki basamaklı bir doğal sayı olmak üzere
8A +B
BZA
f(AB)%3D
5A +6B
B<A
oreb
fonksiyonu tanımlanıyor.
Buna göre,
8A +8 = |UA48-A-8
BriegA
A 23
H
22
f(AB) = AB - A- B
%3D
3.9
eşitliğini kaç farklı AB iki basamaklı sayısı sağlar?
SS
A) 12
B) 3
C) 7
E) T
9+2
D) 15
SA 63 = A
32
64
6
6.
Lise Matematik
Fonksiyon Kavramı ve Gösterimi
-20-1=2 2a=-3 11. AB iki basamaklı bir doğal sayı olmak üzere 8A +B BZA f(AB)%3D 5A +6B B<A oreb fonksiyonu tanımlanıyor. Buna göre, 8A +8 = |UA48-A-8 BriegA A 23 H 22 f(AB) = AB - A- B %3D 3.9 eşitliğini kaç farklı AB iki basamaklı sayısı sağlar? SS A) 12 B) 3 C) 7 E) T 9+2 D) 15 SA 63 = A 32 64 6 6.
7. Bir ticari taksinin ücret tarifesi aşağıdaki gibidir.
dak
Gündüz
Gece
Tarifesi
Tarifesi
Açılış ücreti (TL)
8.
Her 1 km ücreti (TL)
Ismet ve Edip bu taksi ile farklı zamanlarda şekildeķi A nok-
tasından C noktasına gitmiştir.
x km
16 km
II
be
A'dan C'ye; İsmet yolun AB kısmını gece, BC kısmını gün-
düz, Edip yolun AB kısmını gündüz, BC kısmını gece tari-
fesinden hesaplanacak biçimde gitmiştir. Açılış ücreti, tak-
simetre ilk çalıştırıldığında alınan sabit bir ücrettir ve yolcu
inene kadar sadece bir kez uygulanmaktadır.
İsmetin taksi ücretí f(x) fonksiyonu, Edip'in taksi ücreti g(x)
fonksiyonudur.
a > 0 olmak üzere, y = g(x) fonksiyonu, y = f(x) fonksi-
yonunun x = a birim sağa ötelenmiş biçimi olduğuna
göre, a kaçtır?
%3D
%3D
8182=40 2 +2x
42+2x =8Cx)
Sca)
%3D
ACIL MATEMATIK
2.
2.
Lise Matematik
Fonksiyon Kavramı ve Gösterimi
7. Bir ticari taksinin ücret tarifesi aşağıdaki gibidir. dak Gündüz Gece Tarifesi Tarifesi Açılış ücreti (TL) 8. Her 1 km ücreti (TL) Ismet ve Edip bu taksi ile farklı zamanlarda şekildeķi A nok- tasından C noktasına gitmiştir. x km 16 km II be A'dan C'ye; İsmet yolun AB kısmını gece, BC kısmını gün- düz, Edip yolun AB kısmını gündüz, BC kısmını gece tari- fesinden hesaplanacak biçimde gitmiştir. Açılış ücreti, tak- simetre ilk çalıştırıldığında alınan sabit bir ücrettir ve yolcu inene kadar sadece bir kez uygulanmaktadır. İsmetin taksi ücretí f(x) fonksiyonu, Edip'in taksi ücreti g(x) fonksiyonudur. a > 0 olmak üzere, y = g(x) fonksiyonu, y = f(x) fonksi- yonunun x = a birim sağa ötelenmiş biçimi olduğuna göre, a kaçtır? %3D %3D 8182=40 2 +2x 42+2x =8Cx) Sca) %3D ACIL MATEMATIK 2. 2.
Alper aşağıda verilen A noktasından 1 km uzaktaki B nok-
tasına şekildeki hızla gidecektir.
+ 0,5 m/sn
1 km
1000
A
Harekete başlandıktan sonraki herhangi bir anda, kalan yo-
lun başlangıçtan itibaren geçen süreye bağlı fonksiyonu
f'dir.
Buna göre,
I. f doğrusal fonksiyondur.
II. f bire bir fonksiyondur.
III. f'nin tanım kümesi [0, 500] (saniye) alınırsa görüntü
kümesi [750, 1000] (metre) olur.
yargılarından hangileri kesinlikle doğrudur?
A) Yalnız I
B) Yalnız II
C) Yalnız III
D) I ve II
E) I, Il ve III
Lise Matematik
Fonksiyon Kavramı ve Gösterimi
Alper aşağıda verilen A noktasından 1 km uzaktaki B nok- tasına şekildeki hızla gidecektir. + 0,5 m/sn 1 km 1000 A Harekete başlandıktan sonraki herhangi bir anda, kalan yo- lun başlangıçtan itibaren geçen süreye bağlı fonksiyonu f'dir. Buna göre, I. f doğrusal fonksiyondur. II. f bire bir fonksiyondur. III. f'nin tanım kümesi [0, 500] (saniye) alınırsa görüntü kümesi [750, 1000] (metre) olur. yargılarından hangileri kesinlikle doğrudur? A) Yalnız I B) Yalnız II C) Yalnız III D) I ve II E) I, Il ve III
MATEMATIK TESTI
20. 1: A → B bir fonksiyon olmak üzere, f(A) kümesine f fonk-
siyonunun görüntü kümesi denir.
Cir fab
f: R→R olmak üzere, f fonksiyonu
3u yılı
al üre
|x[ > 3 ise
- 5,
f(x) =
(-x²+ 4, x| <3 ise
%3D
Buna
x|<3 ise
yısı
biçiminde tanımlanıyor.
A) 5
Buna göre, f fonksiyonunun görüntü kümesi aşağıda-
kilerden hangisidir?
47
A) [- 4, 4]
B) 5, 4]
C) (- 4, 5)
D) [- 5, 4)
E) [- 5, 5), fe) >-5
Lise Matematik
Fonksiyon Kavramı ve Gösterimi
MATEMATIK TESTI 20. 1: A → B bir fonksiyon olmak üzere, f(A) kümesine f fonk- siyonunun görüntü kümesi denir. Cir fab f: R→R olmak üzere, f fonksiyonu 3u yılı al üre |x[ > 3 ise - 5, f(x) = (-x²+ 4, x| <3 ise %3D Buna x|<3 ise yısı biçiminde tanımlanıyor. A) 5 Buna göre, f fonksiyonunun görüntü kümesi aşağıda- kilerden hangisidir? 47 A) [- 4, 4] B) 5, 4] C) (- 4, 5) D) [- 5, 4) E) [- 5, 5), fe) >-5
DIF 14
Tanım kümeleri sırasıyla rakamları sıfırdan farklı
iki basamaklı KL, üç basamaklı KLM sayılarından
oluşan f ve g fonksiyonları
KLM
KL
f(KL) =
K.L
g(KLM) =
%3D
%3D
K L+M
biçiminde tanımlanıyor.
Buna göre, (fog)(2A5) ifadesinin alabileceği
değerler toplamı kaçtır?
59
A)
14
69
C)
14
B)
D) 5
36
E)
0/2
5.
Lise Matematik
Fonksiyon Kavramı ve Gösterimi
DIF 14 Tanım kümeleri sırasıyla rakamları sıfırdan farklı iki basamaklı KL, üç basamaklı KLM sayılarından oluşan f ve g fonksiyonları KLM KL f(KL) = K.L g(KLM) = %3D %3D K L+M biçiminde tanımlanıyor. Buna göre, (fog)(2A5) ifadesinin alabileceği değerler toplamı kaçtır? 59 A) 14 69 C) 14 B) D) 5 36 E) 0/2 5.
1. Gerçek sayılar kümesinde tanımlı
1. f(x) = 2x + 3
II. g(x) = -x
III. h(x) = x + 1
fonksiyonlarından hangileri bire birdir?
A) Yalnız!
B) Yalnız III
C) I ve II
D) I ve III
E) I, II ve III
Lise Matematik
Fonksiyon Kavramı ve Gösterimi
1. Gerçek sayılar kümesinde tanımlı 1. f(x) = 2x + 3 II. g(x) = -x III. h(x) = x + 1 fonksiyonlarından hangileri bire birdir? A) Yalnız! B) Yalnız III C) I ve II D) I ve III E) I, II ve III
Soru 38
f(x) = 3x - 1. (fogof)(x) = 3x + 2
fonksiyonları veriliyor. g(2) değeri kaçtır?
A) 0 B) 1 C) 2 D) 3 E) 4
Lise Matematik
Fonksiyon Kavramı ve Gösterimi
Soru 38 f(x) = 3x - 1. (fogof)(x) = 3x + 2 fonksiyonları veriliyor. g(2) değeri kaçtır? A) 0 B) 1 C) 2 D) 3 E) 4
T
+3 +5
C) √x+ 5+3
E √x-3-5
14.
eğeri
f(x) = x2 – 3x2 + 3x
olduğuna göre, f-'(x + 1) ifadesinin eşiti aşağıdakilerden
hangisidir?
B) 35x+1
C) 35x + 2
D) (x +3 E) VX-3
A) 3/
A
8. D
9. D
10. C
11. D
12. E
13. B
14. B:
Lise Matematik
Fonksiyon Kavramı ve Gösterimi
T +3 +5 C) √x+ 5+3 E √x-3-5 14. eğeri f(x) = x2 – 3x2 + 3x olduğuna göre, f-'(x + 1) ifadesinin eşiti aşağıdakilerden hangisidir? B) 35x+1 C) 35x + 2 D) (x +3 E) VX-3 A) 3/ A 8. D 9. D 10. C 11. D 12. E 13. B 14. B:
a b c x
.
de
Das
mn
A-C=y det uabox
14. f, g ve h birer fonksiyondurlar.
A ülkesindeki ayakkabı numaralarını B ülkesindeki ayakka- E
Acil MATEMATIK
bi numaralarına dönüştüren fonksiyon f(x) = ?, B ülkesin- ö
deki ayakkabı numaralarını C ülkesindeki ayakkabı numa-
ralarına dönüştüren fonksiyon g(x) = 40x + 1'dir.
Buna göre, A ülkesindeki ayakkabı numaralarını Cül-
kesindeki ayakkabı numaralarına dönüştüren h fonksi-
yonu aşağıdakilerden hangisidir?
A h(x) = 20 x 1
36 borad B) h(x) = 20x4
C) h(x) = 240x + =
D) h(x) = 240x + 1
E) h(x) ='40x 1
UcA=60 a 6
J = B.
C=UcBr!
Youth
Lise Matematik
Fonksiyon Kavramı ve Gösterimi
a b c x . de Das mn A-C=y det uabox 14. f, g ve h birer fonksiyondurlar. A ülkesindeki ayakkabı numaralarını B ülkesindeki ayakka- E Acil MATEMATIK bi numaralarına dönüştüren fonksiyon f(x) = ?, B ülkesin- ö deki ayakkabı numaralarını C ülkesindeki ayakkabı numa- ralarına dönüştüren fonksiyon g(x) = 40x + 1'dir. Buna göre, A ülkesindeki ayakkabı numaralarını Cül- kesindeki ayakkabı numaralarına dönüştüren h fonksi- yonu aşağıdakilerden hangisidir? A h(x) = 20 x 1 36 borad B) h(x) = 20x4 C) h(x) = 240x + = D) h(x) = 240x + 1 E) h(x) ='40x 1 UcA=60 a 6 J = B. C=UcBr! Youth
Şekilde verilen f(x) doğru-
sal fonksiyonun grafiğine
göre,
-3
(fof)(x)% 34x +k oldu-
ğuna göre, f(k) değerini
bulunuz.
3.
-9
f(x)
12
9/2
TK
4.
Lise Matematik
Fonksiyon Kavramı ve Gösterimi
Şekilde verilen f(x) doğru- sal fonksiyonun grafiğine göre, -3 (fof)(x)% 34x +k oldu- ğuna göre, f(k) değerini bulunuz. 3. -9 f(x) 12 9/2 TK 4.