Polinomlarla İşlemler Soruları
Lise Matematik
Polinomlarla İşlemler5.
P(x-3) polinomunun x² + x + 1 ile bölümünden
kalan 2x + 3, Q(x + 1) polinomunun x² + x + 1
ile bölümünden kalan x-2 dir.
Buna göre, P(x-3). Q(x + 1) polinomunun x² + x + 1
ile bölümünden kalan aşağıdakilerden hangisidir?
A) -3x - 9
B)-3x-8
D) 3x-9
E) 3x - 8
C) 0
Lise Matematik
Polinomlarla İşlemler23. Aşağıdaki şekilde bir kenari a birim olan KLMN karesi şeklin-
deki karton gösterilmiştir.
9-3
2-2
2
D
K 2
A) h (a) = 4a-12
C) h(a) = 4a
3
B) h(a) = 4a-6
D) h(a) = 8a-8
E) h(a) = 2a-12
M
a-2
Yukarıdaki şeklin tamamı karelerden oluşmaktadır.
Sarı ve mor renkli kareler kesildikten sonra kalan kartonun
çevresini belirten a değişkenine bağlı h fonksiyonu aşağı-
dakilerden hangisidir?
3
2-3
Lise Matematik
Polinomlarla İşlemler-3
P(-2) = -2
14. P(x) polinomunun 3x² + 5x-2 ile bölümünden
elde edilen bölüm Q(x), kalan 4x + 8 dir. P(x)
polinomunun x + 2 ile bölümünden elde edilen
bölüm aşağıdakilerden hangisidir?
14
A) (3x-1). Q(x)
C) (x+2). Q(x)
B) (3x-1). Q(x) + 4
D) (3x-1). Q(x) + 2
D) (3x-1). Q(x) + x + 2
5X-²1 47X4 CHRY
Lise Matematik
Polinomlarla İşlemlerAE
A kü-
in alt
eğer
de-
8.
AYT/Matematik
Sifir polinomundan farklı bir P(x) polinomu her x gerçel sayısı
için
P(x) + P(x + 1) = P(x) • P(x + 1)
eşitliğini
sağlamaktadır.
Buna göre, P(-1) + P(11) toplamı kaçtır?
A) 4
B) 6
C) 7
PA
D) 10 E) 13
10. Dik ka
fonks
aşa
Lise Matematik
Polinomlarla İşlemlersayılı
(a
Ca~41 Call/
920-3
20+1=0
2
9.-a+1=0 olduğuna göre;
A) 2
WICK
524
--X+1-9
S
a48-4-a24+5
25-2005
ifadesinin eşiti aşağıdakilerden hangisidir?
a
242
B) a -1
-5
5. Deneme
4(x24)
3a+4 3c²24A
Dar
2
A
C) a + 1 D) a-9 E) a +9
-1-a²=-9
92924
397-3048
Jo
45
Lise Matematik
Polinomlarla İşlemlererik
11.
.
A
P(x) ve Q(x) birer polinom olmak üzere,
.
MATEMATİK
P(x) polinomunun x² + x + 1 ile bölümünden elde
edilen bölüm Q(x) ve kalan 2x - 1'dir.
Q(x) polinomunun x-1 ile bölümünden kalan 3'tür.
Buna göre, P(x) polinomunun x3-1 ile bölümünden
kalan aşağıdakilerden hangisidir?
A) 3x² - 5x-2
C) 3x² - 5x + 3
B) 3x² + 5x - 2
D)
3x² + 5x + 4
E) 3x² + 5x + 2
12. a 0 ve a, b, c birer gerçel sayı olmak üzere,
Lise Matematik
Polinomlarla İşlemler11.
AY
16
0
2
A) 11 B)
4
Yukarıdaki grafiğin mavi ile çizili kısmı P(x) = x² polinomu-
na, kırmızı ile çizili kısmı ise birinci dereceden R(x) poli-
nomuna aittir.
23
2
Buna göre, aşağıdakilerden hangisi R(x) polinomu-
nun sıfırıdır?
10
C) 12
D).
25
2
E) 13
Lise Matematik
Polinomlarla İşlemler12. İkinci dereceden, üç terimli polinomlar için geçerli olan
"büyüklük" kavramı aşağıda anlatıldığı gibi tanımlanır.
P(x) = ax² + bx + c ve Q(x) = px² + rx + k
polinomları verilsin.
p≥a, r≥ b ve k ≥ c ise Q(x), P(x)'ten büyüktür denir ve
Q(x) ► P(x) olarak gösterilir.
Buna göre,
1.
II.
III.
ifadelerinden hangileri kesinlikle doğrudur?
P(x) ► R(x) ve R(x) ► Q(x) ise P(x) ► Q(x) olur.
P(x) ► Q(x) ise -Q(x) ►-P(x)
P(x) ► Q(x) ve Q(x) ► P(x) ise P(x) = Q(x)'tir.
A) Yalnız I
B) Yalnız II
D) I ve III
C) I ve II
E) I, II ve III
Lise Matematik
Polinomlarla İşlemlerP(x) polinomu için aşağıdaki bilgiler veriliyor.
• der (P(x)) = 2
Baş katsayısı -1'dir.
Kökleri çakışıktır.
*
Katsayılanı toplamı -1'dir.
Buna göre, P(5)'in alabileceği değerler toplamı kaç-
tır?
A)-9
B)-16
C)-25
D)-34
E) -40
Lise Matematik
Polinomlarla İşlemler3
2
9.
R(x), 5(x) ve P(x) birer polinom olmak üzere,
P(x)
(x²-4)(x + 1)
(x² - 4x)(x² - 1)
P(x)
R(x) =
S(x) =
Al
eşitlikleri veriliyor.
P(x) polinomu baskatsayısı 1 olan 4. dereceden bir
polinom olduğuna göre, x-3 ile bölümünden kala-
nın alabileceği değerler toplamı kaçtır?
A) 80
C) 88
D) 96
B) 84
E) 100
Lise Matematik
Polinomlarla İşlemler4
11. P(x) ve R(x) birer polinom olmak üzere,
P(x) P(x)
4-x²
R(x) =
x² - 1
eşitliği veriliyor.
Buna göre,
xt.
+
P(x) polinomu x² - 3x + 2 ile tam bölünür.
11. P(x-2) polinomu x² - 6x ile tam bölünür.
III. P(x + 2) polinomu x² + 3x ile tam bölünür.
PIN
ifadelerinden hangileri kesinlikle doğrudur?
A) I, II ve III
B) I ve III
D) Yalnız II
hiz I
-E)Ivell
C) Yalnız I
Lise Matematik
Polinomlarla İşlemlerB E) 32
S37
Üçüncü dereceden gerçel katsayılı P(x) polino-
munun kökleri -3,-1 ve 2 dir.
P(0) = 12 olduğuna göre, x² li terimin katsayısı
kaçtır?
¡A)4
B)-4
C)3
$44
Üçüncü
katsayılı
P(1)
eşitlikler
Buna gö
A)-1
Lise Matematik
Polinomlarla İşlemler66.
P(x) = 3x² + 5x-6 ve
Q(x) = x+2
polinomları veriliyor. P(x) polinomunun Q(x + 1)
polinomuna bölümünden elde edilen bölüm ve
kalanın toplamı aşağıdakilerden hangisine eşit-
tir?
A) 2x-5 B) 2x - 3
D) 3x + 2
C) 3x-6
E) 3x + 5
Lise Matematik
Polinomlarla İşlemler4
8-)
P(x) bir polinom ve
P(x-1) + x².P(x + 1) = x³ + 3x² + x + 1
P(2) = 4 olduğuna göre, P(x) polinomunun sabit
terimi kaçtır? x=O
p(-1)= 1
D) 6
A) 2
B) 3
9-) (x²)2
x-1² p(2)=1+3+1+1
p(2) = 6
8
C) 4
x 2
E) 8
Al
Lise Matematik
Polinomlarla İşlemlerP(x) polinomu için aşağıdaki bilgiler veriliyor.
• der (P(x)) = 2
Baş katsayısı -1'dir.
Kökleri çakışıktır.
a +46
• Katsayıları toplamı -1'dir.
Buna göre, P(5)'in alabileceği değerler toplamı kaç-
tır?
A) -9 B) -16
C) -25
D) -34
E) -40
Lise Matematik
Polinomlarla İşlemlereden Eşitsizlikler, Parabol
55. Aşağıda bir biçerdöver ile bir römork verilmektedir.
Biçerdöver
Depo
Biçerdöver buğdayları deposu dolana kadar biçtikten sonra
römorka boşaltmaktadır.
formülü oluşturulmuştur.
A) 2
Biçerdöverin içindeki buğdayın t dakika sonra miktarını
hesaplamak için
B(t) = (-t² + 100t+ 2000) kg
B) 3
pe mal 20 no
MATEMATİK
Römork
Azami Limit
1.5 ton
Buna göre, biçerdöverin deposu alabileceği en fazla
buğday ile dolu olduğu anda kaç tane römorku tam olarak
doldurabilir?
C) 4
siya
Inmio maan send
D) 5
E) 6
vd = 82
del hogob
818