Hayalindeki netler. İhtiyacın olan her şey. Tek platform.

Soru çözüm, yayın seti, birebir rehberlik, canlı dersler ve daha fazlası Kunduz’da. Şimdi al, netlerini artırmaya başla.

Türev Alma Soruları

11.
12.
9m
TT3
ETKİLEŞİMLİ
TAHTA
3
3 m
1
-A
öğrenci
A noktasında oturan öğrencinin etkileşimli tahtayı en
geniş açıyla görebilmesi için x en fazla kaç metre ol-
malıdır?
A) 2
B) 3
C) 2√3 D) 3√2
E) 6
4-1
C
D
0
Lise Matematik
Türev Alma
11. 12. 9m TT3 ETKİLEŞİMLİ TAHTA 3 3 m 1 -A öğrenci A noktasında oturan öğrencinin etkileşimli tahtayı en geniş açıyla görebilmesi için x en fazla kaç metre ol- malıdır? A) 2 B) 3 C) 2√3 D) 3√2 E) 6 4-1 C D 0
c = ax² +bx+c
-b)
Gerçek sayılar kümesi üzerinde tanımlı türevlenebilir bir f
fonksiyonu için,
201
enini kestiği noktala-
-9
f(x+y)=f(x) + f(y)+2xy
X₁4X2 =
sisli noktalarındaki
f(x)
lim- = 5
X-0 X
dakilerden hangisi-
olduğuna göre, f'(2) ifadesinin değeri kaçtır?
Sta
C) 2b+a²
A) 3
B) 5
C) 7
D) 9
E) 11
E) 4b-22
2x, +91
>
falx1+x2)
2x2+9
341/2.9 +92
b
4x1.x2 2x1-9
46-292 192 346-9²
Matematik Soru Bankası
12.
ar a
Lise Matematik
Türev Alma
c = ax² +bx+c -b) Gerçek sayılar kümesi üzerinde tanımlı türevlenebilir bir f fonksiyonu için, 201 enini kestiği noktala- -9 f(x+y)=f(x) + f(y)+2xy X₁4X2 = sisli noktalarındaki f(x) lim- = 5 X-0 X dakilerden hangisi- olduğuna göre, f'(2) ifadesinin değeri kaçtır? Sta C) 2b+a² A) 3 B) 5 C) 7 D) 9 E) 11 E) 4b-22 2x, +91 > falx1+x2) 2x2+9 341/2.9 +92 b 4x1.x2 2x1-9 46-292 192 346-9² Matematik Soru Bankası 12. ar a
19.
C
A
R
B
Kısa kenannın uzunluğu 6 birim olan dikdörtgen şeklindeki bir
kağıdın D köşesi [AB] üzerine gelecek şeklinde katlandığında
R noktasına denk geliyor.
|BC| = 6 cm olduğuna göre, ARP üçgeninin alanı en çok
kaç cm² dir?
A) 2√3
B)√3
C) 4√3
D) 3
E) 6
22.
ba
old
topi
A) 1
Lise Matematik
Türev Alma
19. C A R B Kısa kenannın uzunluğu 6 birim olan dikdörtgen şeklindeki bir kağıdın D köşesi [AB] üzerine gelecek şeklinde katlandığında R noktasına denk geliyor. |BC| = 6 cm olduğuna göre, ARP üçgeninin alanı en çok kaç cm² dir? A) 2√3 B)√3 C) 4√3 D) 3 E) 6 22. ba old topi A) 1
22. f ve g bire bir ve örten fonksiyonlar olmak üzere,
(fog)(x) = 4x³ + 6x
g'(2)
g(2) =
= 2
2
eşitlikleri veriliyor.
Buna göre, lim f(x)-f(2) limitinin değeri kaçtır?
x→2 x (x-2) F
27
9
3
27
A)
B)
C)
E)
2
8
4
g₁2)=2 g²₁₂)=4
-22
fig(x)) = 4₁x²³ +6x
f(g/2)) = f(2)
f12) = 32 +12 = 44
Lise Matematik
Türev Alma
22. f ve g bire bir ve örten fonksiyonlar olmak üzere, (fog)(x) = 4x³ + 6x g'(2) g(2) = = 2 2 eşitlikleri veriliyor. Buna göre, lim f(x)-f(2) limitinin değeri kaçtır? x→2 x (x-2) F 27 9 3 27 A) B) C) E) 2 8 4 g₁2)=2 g²₁₂)=4 -22 fig(x)) = 4₁x²³ +6x f(g/2)) = f(2) f12) = 32 +12 = 44
42. Analitik düzlemde
xy²-x³y-6-0
denklemiyle verilen eğri üzerindeki P(xo, Yo)
noktasından geçen teğet doğrusu x eksenine paralel
olduğuna göre, xo kaçtır?
-3
A) -3
B) -2
(C)=3/2013
1
D) 6
aband
E) 1
Lise Matematik
Türev Alma
42. Analitik düzlemde xy²-x³y-6-0 denklemiyle verilen eğri üzerindeki P(xo, Yo) noktasından geçen teğet doğrusu x eksenine paralel olduğuna göre, xo kaçtır? -3 A) -3 B) -2 (C)=3/2013 1 D) 6 aband E) 1
20. a ve b reel sayılar olmak üzere,
-2x+2²0)
2
-X
x² + 2x, x≤ 1
f(x)=
=
0=2×1+95
2
x² + ax+b, x>1
fonksiyonu tüm reel sayılar için türevli olduğuna göre,
a b çarpımı kaçtır?
A) -9
B) -4
C) -1
D) O
E) 4
a=12
-1+2=-1
-1 = 1+ a +b
a+b = -3
Lise Matematik
Türev Alma
20. a ve b reel sayılar olmak üzere, -2x+2²0) 2 -X x² + 2x, x≤ 1 f(x)= = 0=2×1+95 2 x² + ax+b, x>1 fonksiyonu tüm reel sayılar için türevli olduğuna göre, a b çarpımı kaçtır? A) -9 B) -4 C) -1 D) O E) 4 a=12 -1+2=-1 -1 = 1+ a +b a+b = -3
17. Aşağıdaki şekilde birim çember, x = 1 doğrusu ve x
ekseni ile pozitif yönde a derecelik açı yapan [OD ışını
verilmiştir.
Ca
Y
D
x²+y²=1
A
Je
çare
X=1
[OD nin birim çemberi kestiği nokta B noktası, x = 1
doğrusunu kestiği nokta C noktası ve çember ile x = 1
doğrusunun teğet olduğu nokta A noktasıdır.
sin ax a
=
lim
-x-0 sin bx
b
Suflerns
olduğuna göre,
|BC|
Lav
lim
a-0 |AC²
ifadesinin değeri kaçtır?
1
A) O
B)
4
Aute
m
ter
O
4
8
B
T
11/12/2
D)
2|3
Josex
cory
Er
E) 1
Lise Matematik
Türev Alma
17. Aşağıdaki şekilde birim çember, x = 1 doğrusu ve x ekseni ile pozitif yönde a derecelik açı yapan [OD ışını verilmiştir. Ca Y D x²+y²=1 A Je çare X=1 [OD nin birim çemberi kestiği nokta B noktası, x = 1 doğrusunu kestiği nokta C noktası ve çember ile x = 1 doğrusunun teğet olduğu nokta A noktasıdır. sin ax a = lim -x-0 sin bx b Suflerns olduğuna göre, |BC| Lav lim a-0 |AC² ifadesinin değeri kaçtır? 1 A) O B) 4 Aute m ter O 4 8 B T 11/12/2 D) 2|3 Josex cory Er E) 1
I. f(x) = |(x-a)n| fonksiyonu x = a noktasında sadece
n = 1 için türevsizdir.
n = 2, 3, 4, 5, ... için daima türevlidir ve türevi sıfıra
eşittir.
5
II. g(x) =
fonksiyonu sadece x = 2 için tanımsız-
(x-2)²
dır. Bu yüzden sadece 1 noktada (x = 2 için) türevsizdir.
1
III. K(x) =
fonksiyonunda payda için A> 0 dir.
2
x²-5x+6
Bu yüzden 2 farklı noktada türevsizdir.
1
IV. p(x) =
fonksiyonunda paydanın diskriminantı
x² +8
sıfırdan küçüktür. Bu yüzden VxER için türevlidir.
X
V. f(x) = fonksiyonu için f'(0) = 0 dir.
X
İfadelerinden hangisi yanlıştır?
A) I
B) II
C) III
D) IV E) V
Lise Matematik
Türev Alma
I. f(x) = |(x-a)n| fonksiyonu x = a noktasında sadece n = 1 için türevsizdir. n = 2, 3, 4, 5, ... için daima türevlidir ve türevi sıfıra eşittir. 5 II. g(x) = fonksiyonu sadece x = 2 için tanımsız- (x-2)² dır. Bu yüzden sadece 1 noktada (x = 2 için) türevsizdir. 1 III. K(x) = fonksiyonunda payda için A> 0 dir. 2 x²-5x+6 Bu yüzden 2 farklı noktada türevsizdir. 1 IV. p(x) = fonksiyonunda paydanın diskriminantı x² +8 sıfırdan küçüktür. Bu yüzden VxER için türevlidir. X V. f(x) = fonksiyonu için f'(0) = 0 dir. X İfadelerinden hangisi yanlıştır? A) I B) II C) III D) IV E) V
9. Aşağıda y = f'(x) fonksiyonunun grafiği verilmiştir.
y
f'
-2
O
X
Buna göre y = f(x) fonksiyonu ile ilgili;eua
1. Bir tane ekstremum noktasına sahiptir, v
II. Bire birdir,
III. Artandır
ifadelerinden hangileri doğrudur?
A) Yalnız !
B) Yalnız III C) I ve II
D) ve III E) I, II ve III
)
) 1, il ye
Lise Matematik
Türev Alma
9. Aşağıda y = f'(x) fonksiyonunun grafiği verilmiştir. y f' -2 O X Buna göre y = f(x) fonksiyonu ile ilgili;eua 1. Bir tane ekstremum noktasına sahiptir, v II. Bire birdir, III. Artandır ifadelerinden hangileri doğrudur? A) Yalnız ! B) Yalnız III C) I ve II D) ve III E) I, II ve III ) ) 1, il ye
f(x
metrik Yorumu - 1
Test
12
fonks
reks
-4
7
-5
-3
o
2
X
y = f(x)
Yukarıda y = f(x) fonksiyonunun grafiği verilmiştir.
f(h+2)-f(2)
Buna göre, lim
h→0
h
limitinin değeri kaçtır?
A-1
(B)
C) 1
D) 2
E) 3
4-2 X-1
Lise Matematik
Türev Alma
f(x metrik Yorumu - 1 Test 12 fonks reks -4 7 -5 -3 o 2 X y = f(x) Yukarıda y = f(x) fonksiyonunun grafiği verilmiştir. f(h+2)-f(2) Buna göre, lim h→0 h limitinin değeri kaçtır? A-1 (B) C) 1 D) 2 E) 3 4-2 X-1
x20
5.
f(x)
(x3
dx
- 9x) dx
)
ya
fonksiyonunun ekstremum noktalarının apsisler
çarpımı kaçtır?
54
APOTEM
A)
B)-3
D/3
E) 9
f(x)=x. 3x
3x².8=D
Ukh+3x²+ (x+C
x² = 8
6
Xa.ws
6.
f(k) fonksiyonunun ters türevi F(x) olmak üzere,
f(x) = 2x + 1
f (x+d) = X
F(0) = F (1)
eşitlikleri veriliyor.
tly
Buna göre, F(1) değeri kaçtır?
A) - 1
B) O
C) 1
D) 3
E) 5
4)D
5) B
6) E
- 45
Lise Matematik
Türev Alma
x20 5. f(x) (x3 dx - 9x) dx ) ya fonksiyonunun ekstremum noktalarının apsisler çarpımı kaçtır? 54 APOTEM A) B)-3 D/3 E) 9 f(x)=x. 3x 3x².8=D Ukh+3x²+ (x+C x² = 8 6 Xa.ws 6. f(k) fonksiyonunun ters türevi F(x) olmak üzere, f(x) = 2x + 1 f (x+d) = X F(0) = F (1) eşitlikleri veriliyor. tly Buna göre, F(1) değeri kaçtır? A) - 1 B) O C) 1 D) 3 E) 5 4)D 5) B 6) E - 45
9.
7. P(x) üçüncü dereceden bir polinom ve
y2 = P(x) olduğuna göre,
/d²y
za (kmy..y
sy" (+).yo
2
d
dx
13
dx2
ifadesi aşağıdakilerden hangisine eşit-
tir?
A) O
B) 1
C) P'(x).P"(x) D) P(x).P"(x)
E) P(x).P"(x)
Lise Matematik
Türev Alma
9. 7. P(x) üçüncü dereceden bir polinom ve y2 = P(x) olduğuna göre, /d²y za (kmy..y sy" (+).yo 2 d dx 13 dx2 ifadesi aşağıdakilerden hangisine eşit- tir? A) O B) 1 C) P'(x).P"(x) D) P(x).P"(x) E) P(x).P"(x)
TÜREV
9.
f fonksiyonu Xo noktasında türevlenebilir olmak
üzere,
-lemani
f fonk-
f(x) - f'(x). (x - xo) – f(x)
lim
Xx
x-xo
limiti aşağıdakilerden hangisine eşittir?
A) O
B) xo
c) - f'(x)
0 2.f'(x)
E) 2.f'(x)
16
10.
f'(x)•g(x) + g'(x)=f(x) = x2 + 1
+
olduğuna göre, f(x)•g(x) fonksiyonu aşağıdaki-
lerden hangisi olabilir?
JAX
B) 2x
D)
x
3
C) x2 + 1
+1
+13
ho
Lise Matematik
Türev Alma
TÜREV 9. f fonksiyonu Xo noktasında türevlenebilir olmak üzere, -lemani f fonk- f(x) - f'(x). (x - xo) – f(x) lim Xx x-xo limiti aşağıdakilerden hangisine eşittir? A) O B) xo c) - f'(x) 0 2.f'(x) E) 2.f'(x) 16 10. f'(x)•g(x) + g'(x)=f(x) = x2 + 1 + olduğuna göre, f(x)•g(x) fonksiyonu aşağıdaki- lerden hangisi olabilir? JAX B) 2x D) x 3 C) x2 + 1 +1 +13 ho
4.
Gerçel sayılarda tanımlı bir f fonksiyonunun x = a
civarındaki lineer yakınsaması
y=f(a).(-a) + f(a)
şeklinde bulunur.
Buna göre, f(x) = Vx fonksiyonunun x = 4 civarındaki
lineer yakınsaması aşağıdakilerden hangisidir?
y =
y
A) y= (x-4)+2
B) y=1(x-2)+2
(x-2)
c) y={(x-4)+4
D) y=*(x-4)+2
E) y={(x-4)+4
y
3.C 4.D
54
Lise Matematik
Türev Alma
4. Gerçel sayılarda tanımlı bir f fonksiyonunun x = a civarındaki lineer yakınsaması y=f(a).(-a) + f(a) şeklinde bulunur. Buna göre, f(x) = Vx fonksiyonunun x = 4 civarındaki lineer yakınsaması aşağıdakilerden hangisidir? y = y A) y= (x-4)+2 B) y=1(x-2)+2 (x-2) c) y={(x-4)+4 D) y=*(x-4)+2 E) y={(x-4)+4 y 3.C 4.D 54
1
20.
y=f(x)
2.
1
1
-1
0
4x
X
Şekilde y = f(x) doğrusal fonksiyonunun grafiği verilmiş-
tir.
g:R\{-1} → Rye tanımlanan
x4 - 1
g(x) = fonksiyonuna üzerindeki A(1, n) nokta-
f(x)
sından çizilen teğetinin eğimi kaçtır?
A) -2 B) -1 C) D) 1 E) 2
1
5
Lise Matematik
Türev Alma
1 20. y=f(x) 2. 1 1 -1 0 4x X Şekilde y = f(x) doğrusal fonksiyonunun grafiği verilmiş- tir. g:R\{-1} → Rye tanımlanan x4 - 1 g(x) = fonksiyonuna üzerindeki A(1, n) nokta- f(x) sından çizilen teğetinin eğimi kaçtır? A) -2 B) -1 C) D) 1 E) 2 1 5
1. Kenar uzunlukları 6 cm ve 8 cm olan dikdörtgenin
kısa kenarı 0,2 cm/sn hızla artarken uzun kenarı
0,1 cm/sn hızla arttırılıyor.
Buna göre, dikdörtgenin uzun kenarının 9 cm
olduğu anda alanının anlık değişim hızı kaç
cm²/sn dir?
A) 2,6
B) 2,4
C) 2,2
D) 2 E) 1,8
S.
Lise Matematik
Türev Alma
1. Kenar uzunlukları 6 cm ve 8 cm olan dikdörtgenin kısa kenarı 0,2 cm/sn hızla artarken uzun kenarı 0,1 cm/sn hızla arttırılıyor. Buna göre, dikdörtgenin uzun kenarının 9 cm olduğu anda alanının anlık değişim hızı kaç cm²/sn dir? A) 2,6 B) 2,4 C) 2,2 D) 2 E) 1,8 S.